Coupling Processes in the Equatorial Spread F/Plasma Bubble Irregularity Development

  • Mangalathayil Ali AbduEmail author
  • E. Alam Kherani
Part of the IAGA Special Sopron Book Series book series (IAGA, volume 2)


The plasma convection pattern of the evening sector equatorial ionosphere sets the condition for the plasma structuring through instability processes leading to the Equatorial Spread F (ESF)/plasma bubble irregularity development and evolution. Vertical coupling through upward propagating atmospheric waves controls/modifies the ionosphere-thermosphere interactive processes that eventually lead to the irregularity development. Instabilities grow by the Rayleigh-Taylor mechanism at the bottom side gradient region of a “rapidly” rising post sunset F layer in the presence of precursor conditions in terms of perturbations in plasma density, convection velocity and polarization electric fields. Field line integrated conductivity controlled by thermospheric meridional/trans-equatorial winds regulates the instability growth. The day-to-day and short term variabilities in the ESF are of major concern for space application and operational systems. Our efforts to understand such variabilities and to predict the ESF occurrence pose important scientific challenges especially because of the complexity of the diverse coupling processes that control them. There is convincing new evidences that during magnetically quiet conditions, the coupling processes due to upward propagating planetary waves and/or modulated tides, and gravity waves, with their highly variable propagation conditions, energy fluxes and periodicities control the ESF variability. Penetrating electric fields and disturbance dynamo electric fields from magnetosphere-ionosphere coupling processes also cause large degree of variability. This chapter provides a review of our current understanding of the ESF development processes and its day-to-day variability originating from the different coupling processes mentioned above.


Flux Tube Vertical Drift Polarization Electric Field Equatorial Ionization Anomaly Bubble Rise Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



MAA wishes to acknowledge the supports received from the CNPq (Conselho Nacional de Pesquisa e Desenvolvimento) through the grant: 300883/2008-00. EAK wish to acknowledge the support from FAPESP through the grant 07/00104-0.


  1. Abdu MA (2001) Outstanding problems in the equatorial ionosphere thermosphere system relevant to spread F. J Atmos Solar-Terr Phys 63:869–884CrossRefGoogle Scholar
  2. Abdu MA, Batista PP, Batista IS, Brum CGM, Carrasco AJ (2006a) Planetary wave oscillations in mesospheric winds, equatorial evening prereversal electric field and spread F. Geophys Res Lett 33:L07107. doi:10.1029/2005GL024837CrossRefGoogle Scholar
  3. Abdu MA, Batista IS, Reinisch BW, de Souza JR, Sobral JHA, Pedersen TR, Medeiros AF, Schuch NJ, de Paula ER, Groves KM (2009a) Conjugate point equatorial experiment (COPEX) campaign in Brazil: electrodynamics highlights on spread F development conditions and day-to-day variability. J Geophys Res 114:A04308. doi:10.1029/2008JA013749CrossRefGoogle Scholar
  4. Abdu MA, Batista IS, Takahashi H, MacDougall J, Sobral JH, Medeiros AF, Trivedi NB (2003a) Magnetospheric disturbance induced equatorial plasma bubble development and dynamics: a case study in Brazilian sector. J Geophys Res 108(A12):1449. doi:10.1029/2002JA009721CrossRefGoogle Scholar
  5. Abdu MA, Batista IS, Walker GO, Sorel JHA, Thrived NB, de Paula ER (1995) Equatorial ionosphere electric field during magnetospheric disturbances: local time/longitude dependences from recent EITS campaigns. J Atmos Solar-Terr Phys 57:1065–1083CrossRefGoogle Scholar
  6. Abdu MA, Batista IS, Sobral JHA (1992) A new aspects of magnetic declination control on equatorial spread F and F region dynamo. J Geophys Res 97(A10):14897–14904Google Scholar
  7. Abdu MA, Bittencourt JA, Batista IS (1981) Magnetic declination control of the equatorial F region dynamo electric field development and spread F. J Geophys Res 86:11443–11446CrossRefGoogle Scholar
  8. Abdu MA, Brum CGM (2009) Electrodynamics of the vertical coupling processes in the atmosphere-ionosphere system of the low latitude region. Earth Planets Space 61:385–395Google Scholar
  9. Abdu MA, de Medeiros RT, Bittencourt JA, Batista IS (1983)Vertical ionization drift velocities and range spread F in the evening equatorial ionosphere. J Geophys Res 88:399–402. doi:10.1029/ JA088iA01p00399CrossRefGoogle Scholar
  10. Abdu MA, Iyer KN, de Medeiros RT, Batista IS, Sobral, JHA (2006b) Thermospheric meridional wind control of equatorial spread F and evening prereversal electric field. Geophys Res Lett 33(L07106):1–4Google Scholar
  11. Abdu MA, Kherani EA, Batista IS, de Paula ER, Fritts DC, Sobral JHA (2009b) Gravity wave initiation of equatorial spread F/plasma bubble irregularities based on observational data from the SpreadFEx campaign. Ann Geophys 27:1–16CrossRefGoogle Scholar
  12. Abdu MA, Kherani EA, Batista IS, Sobral JHA (2009c) Equatorial evening prereversal vertical drift and spread F suppression by disturbance penetration electric fields. Geophys Res Lett 36: L19103. doi:10.1029/2009GL039919CrossRefGoogle Scholar
  13. Abdu MA, MacDougall JW, Batista IS, Sobral JHA, Jayachandran PT (2003b) Equatorial evening prereversal electric field enhancement and sporadic E layer disruption: a manifestation of E and F region coupling. J Geophys Res 108(A6):1254. doi:10.1029/2002JA009285CrossRefGoogle Scholar
  14. Abdu MA, Ramkumar TK, Batista IS, Brum CGM, Takahashi H, Reinisch BW, Sobral JHA (2006c) Planetary wave signatures in the equatorial atmosphere-ionosphere system, and mesosphere- E- and F- region coupling. J Atmos Solar-Terrest Phys 68:509–522CrossRefGoogle Scholar
  15. Abdu MA, Sobral JHA, Nelson OR, Batista IS (1985) Solar cycle related range type spread F occurrence characteristics over equatorial and low latitude stations in Brazil. J Atmos Solar-Terr Phys 47:901–905CrossRefGoogle Scholar
  16. Anderson DN, Reinisch BW, Valladares C, Chau J, Veliz O (2004) Forecasting the occurrence of ionospheric scintillation activity in the equatorial ionosphere on a day-to-day basis. J Atmos Solar-Terr Phys 66:1567–1572. doi:10.1016/j.jastp.2004.07.010CrossRefGoogle Scholar
  17. Basu S, MacKenzie E, Bridgwood C, Valladares CE, Groves KM, Carrano C (2010) Specification of the occurrence of equatorial ionospheric scintillations during the main phase of large magnetic storms within solar cycle 23. Radio Sci 45:RS5009. doi:10.1029/2009RS004343Google Scholar
  18. Batista IS, Abdu MA, Bittencourt JA (1986) Equatorial F-region vertical plasma drifts: seasonal and longitudinal asymmetries in the American sector. J Geophys Res 91:12055–12064CrossRefGoogle Scholar
  19. Batista IS, Abdu MA, Carrasco AJ, Reinisch BW, de Paula ER, Schuch NJ, Bertoni F (2008) Equatorial spread F and sporadic E-layer connections during the Brazilian Conjugate Point Equatorial Experiment (COPEX). J Atmos Solar-Terr Phys 70:1133–1143CrossRefGoogle Scholar
  20. Bhattacharyya A (2004) Role of E region conductivity in the development of equatorial ionospheric plasma bubbles. Geophys Res Lett 31:L06806. doi:10.1029/ 2003GL018960CrossRefGoogle Scholar
  21. Bittencourt JA, Abdu MA (1981) A theoretical comparison between apparent and real vertical ionization drift velocities in the equatorial F-region. J Geophys Res 86:2451–2455.CrossRefGoogle Scholar
  22. Booker HG, Wells HW (1938) Scattering of radio waves in the F region of ionosphere. Terr Magn Atmos Electr 43:249CrossRefGoogle Scholar
  23. Carrasco AJ, Batista IS, Abdu MA (2005) The pre-reversal enhancement in the vertical drift for Fortaleza and the sporadic E layer. J Atmos Solar-Terr Phys 67:1610–1617CrossRefGoogle Scholar
  24. Carrasco AJ, Batista IS, Abdu MA (2007) Simulation of the sporadic E layer response to prereversal associated evening vertical electric field enhancement near dip equator. J Geophys Res 112:A06324. doi:10.1029/2006JA012143CrossRefGoogle Scholar
  25. Chakrabarty D, Sekar R, Narayanan R, Patra AK, Devasia CV (2006) Effects of interplanetary electric field on the development of an equatorial spread F event. J Geophys Res 111:A12316. doi:10.1029/2006JA011884CrossRefGoogle Scholar
  26. Chapagain NP, Fejer BG, Chau JL (2009) Climatology of post sunset equatorial spread F over Jicamarca. J Geophys Res 114:A07307. doi:10.1029/2008JA013911CrossRefGoogle Scholar
  27. Fagundes PR, Pillat VG, Bolzan MJA, Sahai Y, Becker-Guedes F, Abalde JR, Aranha SL, Bittencourt JA (2005) Observations of F layer electron density profiles modulated by planetary wave type oscillations in the equatorial ionospheric anomaly region. J Geophys Res 110:A12302. doi:10.1029/2005JA011115CrossRefGoogle Scholar
  28. Farley DT, Balsley BB, Woodman RF, McClure JP (1970) Equatorial spread F, implications of VHF radar observations. J Geophys Res 75:7199–7216CrossRefGoogle Scholar
  29. Farley DT, Bonelli E, Fejer BG, Larsen MF (1986) The prereversal enhancement of the zonal electric 4eld in the equatorial ionosphere. J Geophys Res 91:13723–13728CrossRefGoogle Scholar
  30. Fejer BG, de Paula ER, Gonzalez SA, Woodman RF (1991) Average vertical and zonal F-region plasma drifts over Jicamarca. J Geophys Res 96:13901–13906CrossRefGoogle Scholar
  31. Fejer BG, Jensen JW, and Su S-Y (2008) Seasonal and longitudinal dependence of equatorial disturbance vertical plasma drifts. Geophys Res Lett 35:L20106. doi:10.1029/2008GL035584CrossRefGoogle Scholar
  32. Fejer BG, Scherliess L, de Paula ER (1999) Effects of the vertical plasma drift velocity on the generation and evolution of equatorial spread F. J Geophys Res 104:19854–19869CrossRefGoogle Scholar
  33. Forbes JM, Leveroni S (1992) Quasi 16-day oscillations in the ionosphere. Geophys Res Lett 19:981–984CrossRefGoogle Scholar
  34. Fritts DC, Vadas SL, Riggin DM, Abdu MA, Batista IS, Takahashi H, Medeiros A, Kamalabadi F, Liu H-L, Fejer BG, Taylor MJ (2008) Gravity wave and tidal influences on equatorial spread F based on observations during the Spread F Experiment (SpreadFEx). Ann Geophys 26:3235–3252CrossRefGoogle Scholar
  35. Fukao S, Yokoyama T, Tayama T, et al (2006) Eastward traverse of equatorial plasma plumes observed with the equatorial atmosphere radar in Indonesia. Ann Geophys 24(5):1411–1418CrossRefGoogle Scholar
  36. Gurubaran S, Sridharan S, Ramkumar TK, Rajaram R (2001) The mesospheric quasi 2-day wave over Tirunelveli. J Atmos Solar-Terr Phys 63:975–985CrossRefGoogle Scholar
  37. Haerendel G (1973) Theory of equatorial spread F. Report, Maxplanck-Institut fur Extraterre. Phys Garching, GermanyGoogle Scholar
  38. Heelis RA, Kendall PC, Moffet RJ, Windle DW, Rishbeth H (1974) Electrical coupling of the E- and F- region and its effects on the F-region drifts and winds. Planet Space Sci 22:743–756CrossRefGoogle Scholar
  39. Huang C-S, Kelley MC (1996) Nonlinear evolution of equatorial spread-F. 4. Gravity waves, velocity shear, and day-to-day variability. J Geophys Res 101:24523Google Scholar
  40. Hysell DL, Burcham JD (1998) JULIA radar studies of equatorial spread F. J Geophys Res 103:29155–29167CrossRefGoogle Scholar
  41. Jayachandran B, Balan N, Rao PB, Sastri JH, Bailey GJ (1993) HF doppler and ionosonde observations on the onset conditions of equatorial spread F. J Geophys Res 98:13741–13750CrossRefGoogle Scholar
  42. Jyoti N, Devasia CV, Sridharan R, Tiwari D (2004) Threshold height (h0F)c for the meridional wind to play a deterministic role in the bottom side equatorial spread F and its dependence on solar activity. Geophys Res Lett 31:L12809. doi: 10.1029/2004GL019455Google Scholar
  43. Kelley MC, Larsen MF, La Hoz C (1981) Gravity wave initiation of equatorial spread-F: a case study. J Geophys Res 86:9087–9100CrossRefGoogle Scholar
  44. Kherani EA, Abdu MA, de Paula ER, Fritts DC, Sobral JHA, de Meneses FC Jr (2009) The impact of gravity waves rising from convection in the lower atmosphere on the generation and nonlinear evolution of equatorial bubble. Ann Geophys 27:1657–1668CrossRefGoogle Scholar
  45. Kherani AE, Mascarenhas M, De Paula ER, Sobral JHA, Bertoni F (2005) A three-dimensional simulation of collisional-interchange-instability in the equatorial-low-latitude ionosphere. 121(1–4), November. doi:10.1007/s11214-006- 6158-xGoogle Scholar
  46. Kil H, Heelis RA (1998) Global distribution of density irregularities in the equatorial ionosphere. J Geophys Res 103: 407–417CrossRefGoogle Scholar
  47. Kudeki E, Akgiray A, Milla M, Chau JL, Hysell DL (2007) Equatorial spread-F initiation: post-sunset vortex, thermospheric winds, gravity waves. J Atmos Solar-Terr Phys 69:2416–2427CrossRefGoogle Scholar
  48. Kudeki E, Bhattacharya S (1999) Post sunset vortex in equatorial F region plasma drifts and implications for bottomside spread-F. J Geophys Res 104(A12):28163–28170Google Scholar
  49. Li G, Ning B, Hu L, Liu L, Yue X, Wan W, Zhao B, Igarashi K, Kubota M, Otsuka Y, Xu JS, Liu JY (2010) Longitudinal development of low-latitude ionospheric irregularities during the geomagnetic storms of July 2004. J Geophys Res 115:A04304. doi:10.1029/2009JA014830Google Scholar
  50. Maruyama T (1988) A diagnostic model for equatorial spread F 1. Model description and application to electric field and neutral wind effects. J Geophys Res 93:14611–4622CrossRefGoogle Scholar
  51. Maruyama T, Matuura N (1984) Longitudinal variability of annual changes in activity of equatorial Spread F and plasma bubbles. J Geophys Res 89(A12):10903–10912CrossRefGoogle Scholar
  52. McClure JP, Sing S, Bamgboye DK, Johnson FS, Kil H (1998) Occurrence of equatorial F region irregularities: evidence for tropospheric seeding. J Geophys Res 103:29119–29135CrossRefGoogle Scholar
  53. Mendillo M, Meriwether J, Biondi M (2001) Testing the thermospheric neutral wind suppression mechanism for the day-to-day variability of equatorial spread F. J Geophys Res 106:3655– 3663CrossRefGoogle Scholar
  54. Muella MTAH, Kherani EA, de Paula ER, Cerruti AP, Kintner PM, Kantor IJ, Mitchell CN, Batista IS, Abdu MA (2010) Scintillation-producing Fresnel-scale irregularities associated with the regions of steepest TEC gradients adjacent to the equatorial ionization anomaly. J Geophys Res 115:A03301. doi:10.1029/2009JA014788CrossRefGoogle Scholar
  55. Pancheva D, Houldoupis C, Meek CE, Manson AH, Mitchell NJ (2003) Evidence of a role for modulated atmospheric tides in the dependence of sporadic E layers on planetary waves. J Geophys Res 108(A5):1176. doi:101029/2002JA009788CrossRefGoogle Scholar
  56. Rastogi RG (1980) Seasonal variation of equatorial spread F in the American and Indian zones. J Geophys Res 85:22CrossRefGoogle Scholar
  57. Richmond AD, Peymirat C, Roble RG (2003) Long-lasting disturbances in the equatorial ionospheric electric field simulated with a coupled magnetosphere-ionosphere-thermosphere model. J Geophys Res 108(A3):1118. doi:10.1029/2002JA009758, 2003CrossRefGoogle Scholar
  58. Rishbeth H (1971) Polarization fields produced by winds in the equatorial F region. Planet Space Sci 19:357–369CrossRefGoogle Scholar
  59. Rishbeth H, Ganguly S, Walker JCG (1978) Field-aligned and field-perpendicular velocities in the ionospheric F2 layer. J Atmos Terr Phys 40:767–784CrossRefGoogle Scholar
  60. Rottger J (1981) Equatorial spread F by electric 4elds and atmospheric gravity waves generated by thunderstorms. J Atmos Solar-Terr Phys 43:453–462CrossRefGoogle Scholar
  61. Saito S, Maruyama T (2006) Ionospheric height variations observed by ionosondes along magnetic meridian and plasma bubble onsets. Ann Geophys 24:2991–2996CrossRefGoogle Scholar
  62. Sastri JH, Abdu MA, Batista IS, Sobral JHA (1997) Onset conditions of equatorial (range) spread F at Fortaleza, Brazil, during the June solstice. J Geophys Res 102(A11): 24013–24021CrossRefGoogle Scholar
  63. Scherliess L, Fejer BG (1997) Storm time dependence of equatorial disturbance dynamo zonal electric field, J Geophys Res 1022(A11):2403–24046Google Scholar
  64. Sekar R, Suhasini R, Raghavarao R (1994) Effects of vertical winds and electric fields in the nonlinear evolution of equatorial spread F. J Geophys Res 99(A2):2205–2213CrossRefGoogle Scholar
  65. Sobral JHA, Abdu MA, Zamlutti CJ, Batista IS (1980) Association between plasma bubble irregularities and airglow disturbances over Brazilian low latitudes. Geophys Res Lett 1:980–982CrossRefGoogle Scholar
  66. Sultan PJ (1996) Linear theory and modeling of the Rayleigh-Taylor instability leading to the occurrence of equatorial spread F. J Geophys Res 101:26875–26891CrossRefGoogle Scholar
  67. Takahashi H, Lima LM, Wrasse CM, Abdu MA, Batista IS, Gobbi D, Buriti RA, Tsuda T (2005) Evidence on 2–4 day modulation of the equatorial ionosphere h’F and mesospheric airglow emission. Geophys Res Let 32:L12102. doi:10.1029/2004GL022318CrossRefGoogle Scholar
  68. Takahashi H, Wrasse CM, Fechine J, Pancheva D, Abdu MA, Batista IS, Lima LM, Batista PP, Clemesha BR, Schuch NJ, Shiokawa K, Gobbi D, Mlynczak MG, Russell JM (2007) Signatures of ultra fast Kelvin waves in the equatorial middle atmosphere and ionosphere. Geophys Res Lett 34:L11108. doi:10.1029/2007GL029612, 2007CrossRefGoogle Scholar
  69. Takahashi H et al (2010) Equatorial ionosphere bottom-type spread F observed by OI 630.0 nm airglow imaging. Geophys Res Lett 37:L03102. doi:10.1029/2009GL041802CrossRefGoogle Scholar
  70. Thampi SV, Yamamoto M, Tsunoda RT, Otsuka Y, Tsugawa T, Uemoto J, Ishii M (2009) First observations of large-scale wave structure and equatorial spread F using CERTO radio beacon on the C/NOFS satellite. Geophys Res Lett 36:L18111. doi:10.1029/2009GL039887CrossRefGoogle Scholar
  71. Tsunoda RT (1985) Control of the seasonal and longitudinal occurrence of equatorial scintillation by longitudinal gradient in integrated Pedersen conductivity. J Geophys Res 90:447–456CrossRefGoogle Scholar
  72. Tsunoda RT (2008) Satellite traces: an ionogram signature for large scale wave structure and a precursor for equatorial spread F. Geophys Res Lett 35:L20110. doi:10.1029/2008GL035706CrossRefGoogle Scholar
  73. Tsunoda RT (2010) On seeding equatorial spread F during solstices. Geophys Res Lett 37:L05102. doi:10.1029/2010GL042576CrossRefGoogle Scholar
  74. Tsunoda RT, White BR (1981) On the generation and growth of equatorial backscatter plumes, 1- Wave structure in the bottomside F layer. J Geophys Res 86:3610–1981Google Scholar
  75. Tulasi Ram S, Rama Rao PVS, Prasad DSVVD, Niranjan K, Gopi Krishna S, Sridharan R, Ravindran S (2008) Local time dependent response of postsunset ESF during geomagnetic storms. J Geophys Res 113:A07310. doi:10.1029/2007JA012922Google Scholar
  76. Vadas SL, Liu H-L (2009) The generation of large-scale gravity waves and neutral winds in the thermosphere from the dissipation of convectively-generated gravity waves. J Geophys Res 114:A10310. doi:10.1029/2009JA014108CrossRefGoogle Scholar
  77. Vincent RA (1993) Long-period motions in the equatorial mesosphere. J Atmos Solar-Terr Phys 55:1067–1080CrossRefGoogle Scholar
  78. Vineeth C, Pant TK, Devasia CV et al (2007) Atmosphere-ionosphere coupling observed over the dip equatorial MLTI region through the quasi 16-day wave. Geophys Res Lett 34(12):L12102, June 16 2007CrossRefGoogle Scholar
  79. Woodman RF, La Hoz C (1976) Radar observations of F region equatorial irregularities. J Geophys Res 81:5447CrossRefGoogle Scholar
  80. Yokoyama T, Fukao S, Yamamoto M (2004) Relationship of the onset of equatorial F region irregularities with the sunset terminator observed with the Equatorial Atmosphere Radar. Geophys Res Lett 31:L24804. doi:10.1029/2004GL021529Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.National Institute for Space ResearchSão Jose dos CamposBrazil

Personalised recommendations