Skip to main content

Coupling Processes in the Equatorial Spread F/Plasma Bubble Irregularity Development

  • Chapter
  • First Online:
Aeronomy of the Earth's Atmosphere and Ionosphere

Part of the book series: IAGA Special Sopron Book Series ((IAGA,volume 2))

Abstract

The plasma convection pattern of the evening sector equatorial ionosphere sets the condition for the plasma structuring through instability processes leading to the Equatorial Spread F (ESF)/plasma bubble irregularity development and evolution. Vertical coupling through upward propagating atmospheric waves controls/modifies the ionosphere-thermosphere interactive processes that eventually lead to the irregularity development. Instabilities grow by the Rayleigh-Taylor mechanism at the bottom side gradient region of a “rapidly” rising post sunset F layer in the presence of precursor conditions in terms of perturbations in plasma density, convection velocity and polarization electric fields. Field line integrated conductivity controlled by thermospheric meridional/trans-equatorial winds regulates the instability growth. The day-to-day and short term variabilities in the ESF are of major concern for space application and operational systems. Our efforts to understand such variabilities and to predict the ESF occurrence pose important scientific challenges especially because of the complexity of the diverse coupling processes that control them. There is convincing new evidences that during magnetically quiet conditions, the coupling processes due to upward propagating planetary waves and/or modulated tides, and gravity waves, with their highly variable propagation conditions, energy fluxes and periodicities control the ESF variability. Penetrating electric fields and disturbance dynamo electric fields from magnetosphere-ionosphere coupling processes also cause large degree of variability. This chapter provides a review of our current understanding of the ESF development processes and its day-to-day variability originating from the different coupling processes mentioned above.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdu MA (2001) Outstanding problems in the equatorial ionosphere thermosphere system relevant to spread F. J Atmos Solar-Terr Phys 63:869–884

    Article  Google Scholar 

  • Abdu MA, Batista PP, Batista IS, Brum CGM, Carrasco AJ (2006a) Planetary wave oscillations in mesospheric winds, equatorial evening prereversal electric field and spread F. Geophys Res Lett 33:L07107. doi:10.1029/2005GL024837

    Article  Google Scholar 

  • Abdu MA, Batista IS, Reinisch BW, de Souza JR, Sobral JHA, Pedersen TR, Medeiros AF, Schuch NJ, de Paula ER, Groves KM (2009a) Conjugate point equatorial experiment (COPEX) campaign in Brazil: electrodynamics highlights on spread F development conditions and day-to-day variability. J Geophys Res 114:A04308. doi:10.1029/2008JA013749

    Article  Google Scholar 

  • Abdu MA, Batista IS, Takahashi H, MacDougall J, Sobral JH, Medeiros AF, Trivedi NB (2003a) Magnetospheric disturbance induced equatorial plasma bubble development and dynamics: a case study in Brazilian sector. J Geophys Res 108(A12):1449. doi:10.1029/2002JA009721

    Article  Google Scholar 

  • Abdu MA, Batista IS, Walker GO, Sorel JHA, Thrived NB, de Paula ER (1995) Equatorial ionosphere electric field during magnetospheric disturbances: local time/longitude dependences from recent EITS campaigns. J Atmos Solar-Terr Phys 57:1065–1083

    Article  Google Scholar 

  • Abdu MA, Batista IS, Sobral JHA (1992) A new aspects of magnetic declination control on equatorial spread F and F region dynamo. J Geophys Res 97(A10):14897–14904

    Google Scholar 

  • Abdu MA, Bittencourt JA, Batista IS (1981) Magnetic declination control of the equatorial F region dynamo electric field development and spread F. J Geophys Res 86:11443–11446

    Article  Google Scholar 

  • Abdu MA, Brum CGM (2009) Electrodynamics of the vertical coupling processes in the atmosphere-ionosphere system of the low latitude region. Earth Planets Space 61:385–395

    Google Scholar 

  • Abdu MA, de Medeiros RT, Bittencourt JA, Batista IS (1983)Vertical ionization drift velocities and range spread F in the evening equatorial ionosphere. J Geophys Res 88:399–402. doi:10.1029/ JA088iA01p00399

    Article  Google Scholar 

  • Abdu MA, Iyer KN, de Medeiros RT, Batista IS, Sobral, JHA (2006b) Thermospheric meridional wind control of equatorial spread F and evening prereversal electric field. Geophys Res Lett 33(L07106):1–4

    Google Scholar 

  • Abdu MA, Kherani EA, Batista IS, de Paula ER, Fritts DC, Sobral JHA (2009b) Gravity wave initiation of equatorial spread F/plasma bubble irregularities based on observational data from the SpreadFEx campaign. Ann Geophys 27:1–16

    Article  Google Scholar 

  • Abdu MA, Kherani EA, Batista IS, Sobral JHA (2009c) Equatorial evening prereversal vertical drift and spread F suppression by disturbance penetration electric fields. Geophys Res Lett 36: L19103. doi:10.1029/2009GL039919

    Article  Google Scholar 

  • Abdu MA, MacDougall JW, Batista IS, Sobral JHA, Jayachandran PT (2003b) Equatorial evening prereversal electric field enhancement and sporadic E layer disruption: a manifestation of E and F region coupling. J Geophys Res 108(A6):1254. doi:10.1029/2002JA009285

    Article  Google Scholar 

  • Abdu MA, Ramkumar TK, Batista IS, Brum CGM, Takahashi H, Reinisch BW, Sobral JHA (2006c) Planetary wave signatures in the equatorial atmosphere-ionosphere system, and mesosphere- E- and F- region coupling. J Atmos Solar-Terrest Phys 68:509–522

    Article  Google Scholar 

  • Abdu MA, Sobral JHA, Nelson OR, Batista IS (1985) Solar cycle related range type spread F occurrence characteristics over equatorial and low latitude stations in Brazil. J Atmos Solar-Terr Phys 47:901–905

    Article  Google Scholar 

  • Anderson DN, Reinisch BW, Valladares C, Chau J, Veliz O (2004) Forecasting the occurrence of ionospheric scintillation activity in the equatorial ionosphere on a day-to-day basis. J Atmos Solar-Terr Phys 66:1567–1572. doi:10.1016/j.jastp.2004.07.010

    Article  Google Scholar 

  • Basu S, MacKenzie E, Bridgwood C, Valladares CE, Groves KM, Carrano C (2010) Specification of the occurrence of equatorial ionospheric scintillations during the main phase of large magnetic storms within solar cycle 23. Radio Sci 45:RS5009. doi:10.1029/2009RS004343

    Google Scholar 

  • Batista IS, Abdu MA, Bittencourt JA (1986) Equatorial F-region vertical plasma drifts: seasonal and longitudinal asymmetries in the American sector. J Geophys Res 91:12055–12064

    Article  Google Scholar 

  • Batista IS, Abdu MA, Carrasco AJ, Reinisch BW, de Paula ER, Schuch NJ, Bertoni F (2008) Equatorial spread F and sporadic E-layer connections during the Brazilian Conjugate Point Equatorial Experiment (COPEX). J Atmos Solar-Terr Phys 70:1133–1143

    Article  Google Scholar 

  • Bhattacharyya A (2004) Role of E region conductivity in the development of equatorial ionospheric plasma bubbles. Geophys Res Lett 31:L06806. doi:10.1029/ 2003GL018960

    Article  Google Scholar 

  • Bittencourt JA, Abdu MA (1981) A theoretical comparison between apparent and real vertical ionization drift velocities in the equatorial F-region. J Geophys Res 86:2451–2455.

    Article  Google Scholar 

  • Booker HG, Wells HW (1938) Scattering of radio waves in the F region of ionosphere. Terr Magn Atmos Electr 43:249

    Article  Google Scholar 

  • Carrasco AJ, Batista IS, Abdu MA (2005) The pre-reversal enhancement in the vertical drift for Fortaleza and the sporadic E layer. J Atmos Solar-Terr Phys 67:1610–1617

    Article  Google Scholar 

  • Carrasco AJ, Batista IS, Abdu MA (2007) Simulation of the sporadic E layer response to prereversal associated evening vertical electric field enhancement near dip equator. J Geophys Res 112:A06324. doi:10.1029/2006JA012143

    Article  Google Scholar 

  • Chakrabarty D, Sekar R, Narayanan R, Patra AK, Devasia CV (2006) Effects of interplanetary electric field on the development of an equatorial spread F event. J Geophys Res 111:A12316. doi:10.1029/2006JA011884

    Article  Google Scholar 

  • Chapagain NP, Fejer BG, Chau JL (2009) Climatology of post sunset equatorial spread F over Jicamarca. J Geophys Res 114:A07307. doi:10.1029/2008JA013911

    Article  Google Scholar 

  • Fagundes PR, Pillat VG, Bolzan MJA, Sahai Y, Becker-Guedes F, Abalde JR, Aranha SL, Bittencourt JA (2005) Observations of F layer electron density profiles modulated by planetary wave type oscillations in the equatorial ionospheric anomaly region. J Geophys Res 110:A12302. doi:10.1029/2005JA011115

    Article  Google Scholar 

  • Farley DT, Balsley BB, Woodman RF, McClure JP (1970) Equatorial spread F, implications of VHF radar observations. J Geophys Res 75:7199–7216

    Article  Google Scholar 

  • Farley DT, Bonelli E, Fejer BG, Larsen MF (1986) The prereversal enhancement of the zonal electric 4eld in the equatorial ionosphere. J Geophys Res 91:13723–13728

    Article  Google Scholar 

  • Fejer BG, de Paula ER, Gonzalez SA, Woodman RF (1991) Average vertical and zonal F-region plasma drifts over Jicamarca. J Geophys Res 96:13901–13906

    Article  Google Scholar 

  • Fejer BG, Jensen JW, and Su S-Y (2008) Seasonal and longitudinal dependence of equatorial disturbance vertical plasma drifts. Geophys Res Lett 35:L20106. doi:10.1029/2008GL035584

    Article  Google Scholar 

  • Fejer BG, Scherliess L, de Paula ER (1999) Effects of the vertical plasma drift velocity on the generation and evolution of equatorial spread F. J Geophys Res 104:19854–19869

    Article  Google Scholar 

  • Forbes JM, Leveroni S (1992) Quasi 16-day oscillations in the ionosphere. Geophys Res Lett 19:981–984

    Article  Google Scholar 

  • Fritts DC, Vadas SL, Riggin DM, Abdu MA, Batista IS, Takahashi H, Medeiros A, Kamalabadi F, Liu H-L, Fejer BG, Taylor MJ (2008) Gravity wave and tidal influences on equatorial spread F based on observations during the Spread F Experiment (SpreadFEx). Ann Geophys 26:3235–3252

    Article  Google Scholar 

  • Fukao S, Yokoyama T, Tayama T, et al (2006) Eastward traverse of equatorial plasma plumes observed with the equatorial atmosphere radar in Indonesia. Ann Geophys 24(5):1411–1418

    Article  Google Scholar 

  • Gurubaran S, Sridharan S, Ramkumar TK, Rajaram R (2001) The mesospheric quasi 2-day wave over Tirunelveli. J Atmos Solar-Terr Phys 63:975–985

    Article  Google Scholar 

  • Haerendel G (1973) Theory of equatorial spread F. Report, Maxplanck-Institut fur Extraterre. Phys Garching, Germany

    Google Scholar 

  • Heelis RA, Kendall PC, Moffet RJ, Windle DW, Rishbeth H (1974) Electrical coupling of the E- and F- region and its effects on the F-region drifts and winds. Planet Space Sci 22:743–756

    Article  Google Scholar 

  • Huang C-S, Kelley MC (1996) Nonlinear evolution of equatorial spread-F. 4. Gravity waves, velocity shear, and day-to-day variability. J Geophys Res 101:24523

    Google Scholar 

  • Hysell DL, Burcham JD (1998) JULIA radar studies of equatorial spread F. J Geophys Res 103:29155–29167

    Article  Google Scholar 

  • Jayachandran B, Balan N, Rao PB, Sastri JH, Bailey GJ (1993) HF doppler and ionosonde observations on the onset conditions of equatorial spread F. J Geophys Res 98:13741–13750

    Article  Google Scholar 

  • Jyoti N, Devasia CV, Sridharan R, Tiwari D (2004) Threshold height (h0F)c for the meridional wind to play a deterministic role in the bottom side equatorial spread F and its dependence on solar activity. Geophys Res Lett 31:L12809. doi: 10.1029/2004GL019455

    Google Scholar 

  • Kelley MC, Larsen MF, La Hoz C (1981) Gravity wave initiation of equatorial spread-F: a case study. J Geophys Res 86:9087–9100

    Article  Google Scholar 

  • Kherani EA, Abdu MA, de Paula ER, Fritts DC, Sobral JHA, de Meneses FC Jr (2009) The impact of gravity waves rising from convection in the lower atmosphere on the generation and nonlinear evolution of equatorial bubble. Ann Geophys 27:1657–1668

    Article  Google Scholar 

  • Kherani AE, Mascarenhas M, De Paula ER, Sobral JHA, Bertoni F (2005) A three-dimensional simulation of collisional-interchange-instability in the equatorial-low-latitude ionosphere. 121(1–4), November. doi:10.1007/s11214-006- 6158-x

    Google Scholar 

  • Kil H, Heelis RA (1998) Global distribution of density irregularities in the equatorial ionosphere. J Geophys Res 103: 407–417

    Article  Google Scholar 

  • Kudeki E, Akgiray A, Milla M, Chau JL, Hysell DL (2007) Equatorial spread-F initiation: post-sunset vortex, thermospheric winds, gravity waves. J Atmos Solar-Terr Phys 69:2416–2427

    Article  Google Scholar 

  • Kudeki E, Bhattacharya S (1999) Post sunset vortex in equatorial F region plasma drifts and implications for bottomside spread-F. J Geophys Res 104(A12):28163–28170

    Google Scholar 

  • Li G, Ning B, Hu L, Liu L, Yue X, Wan W, Zhao B, Igarashi K, Kubota M, Otsuka Y, Xu JS, Liu JY (2010) Longitudinal development of low-latitude ionospheric irregularities during the geomagnetic storms of July 2004. J Geophys Res 115:A04304. doi:10.1029/2009JA014830

    Google Scholar 

  • Maruyama T (1988) A diagnostic model for equatorial spread F 1. Model description and application to electric field and neutral wind effects. J Geophys Res 93:14611–4622

    Article  Google Scholar 

  • Maruyama T, Matuura N (1984) Longitudinal variability of annual changes in activity of equatorial Spread F and plasma bubbles. J Geophys Res 89(A12):10903–10912

    Article  Google Scholar 

  • McClure JP, Sing S, Bamgboye DK, Johnson FS, Kil H (1998) Occurrence of equatorial F region irregularities: evidence for tropospheric seeding. J Geophys Res 103:29119–29135

    Article  Google Scholar 

  • Mendillo M, Meriwether J, Biondi M (2001) Testing the thermospheric neutral wind suppression mechanism for the day-to-day variability of equatorial spread F. J Geophys Res 106:3655– 3663

    Article  Google Scholar 

  • Muella MTAH, Kherani EA, de Paula ER, Cerruti AP, Kintner PM, Kantor IJ, Mitchell CN, Batista IS, Abdu MA (2010) Scintillation-producing Fresnel-scale irregularities associated with the regions of steepest TEC gradients adjacent to the equatorial ionization anomaly. J Geophys Res 115:A03301. doi:10.1029/2009JA014788

    Article  Google Scholar 

  • Pancheva D, Houldoupis C, Meek CE, Manson AH, Mitchell NJ (2003) Evidence of a role for modulated atmospheric tides in the dependence of sporadic E layers on planetary waves. J Geophys Res 108(A5):1176. doi:101029/2002JA009788

    Article  Google Scholar 

  • Rastogi RG (1980) Seasonal variation of equatorial spread F in the American and Indian zones. J Geophys Res 85:22

    Article  Google Scholar 

  • Richmond AD, Peymirat C, Roble RG (2003) Long-lasting disturbances in the equatorial ionospheric electric field simulated with a coupled magnetosphere-ionosphere-thermosphere model. J Geophys Res 108(A3):1118. doi:10.1029/2002JA009758, 2003

    Article  Google Scholar 

  • Rishbeth H (1971) Polarization fields produced by winds in the equatorial F region. Planet Space Sci 19:357–369

    Article  Google Scholar 

  • Rishbeth H, Ganguly S, Walker JCG (1978) Field-aligned and field-perpendicular velocities in the ionospheric F2 layer. J Atmos Terr Phys 40:767–784

    Article  Google Scholar 

  • Rottger J (1981) Equatorial spread F by electric 4elds and atmospheric gravity waves generated by thunderstorms. J Atmos Solar-Terr Phys 43:453–462

    Article  Google Scholar 

  • Saito S, Maruyama T (2006) Ionospheric height variations observed by ionosondes along magnetic meridian and plasma bubble onsets. Ann Geophys 24:2991–2996

    Article  Google Scholar 

  • Sastri JH, Abdu MA, Batista IS, Sobral JHA (1997) Onset conditions of equatorial (range) spread F at Fortaleza, Brazil, during the June solstice. J Geophys Res 102(A11): 24013–24021

    Article  Google Scholar 

  • Scherliess L, Fejer BG (1997) Storm time dependence of equatorial disturbance dynamo zonal electric field, J Geophys Res 1022(A11):2403–24046

    Google Scholar 

  • Sekar R, Suhasini R, Raghavarao R (1994) Effects of vertical winds and electric fields in the nonlinear evolution of equatorial spread F. J Geophys Res 99(A2):2205–2213

    Article  Google Scholar 

  • Sobral JHA, Abdu MA, Zamlutti CJ, Batista IS (1980) Association between plasma bubble irregularities and airglow disturbances over Brazilian low latitudes. Geophys Res Lett 1:980–982

    Article  Google Scholar 

  • Sultan PJ (1996) Linear theory and modeling of the Rayleigh-Taylor instability leading to the occurrence of equatorial spread F. J Geophys Res 101:26875–26891

    Article  Google Scholar 

  • Takahashi H, Lima LM, Wrasse CM, Abdu MA, Batista IS, Gobbi D, Buriti RA, Tsuda T (2005) Evidence on 2–4 day modulation of the equatorial ionosphere h’F and mesospheric airglow emission. Geophys Res Let 32:L12102. doi:10.1029/2004GL022318

    Article  Google Scholar 

  • Takahashi H, Wrasse CM, Fechine J, Pancheva D, Abdu MA, Batista IS, Lima LM, Batista PP, Clemesha BR, Schuch NJ, Shiokawa K, Gobbi D, Mlynczak MG, Russell JM (2007) Signatures of ultra fast Kelvin waves in the equatorial middle atmosphere and ionosphere. Geophys Res Lett 34:L11108. doi:10.1029/2007GL029612, 2007

    Article  Google Scholar 

  • Takahashi H et al (2010) Equatorial ionosphere bottom-type spread F observed by OI 630.0 nm airglow imaging. Geophys Res Lett 37:L03102. doi:10.1029/2009GL041802

    Article  Google Scholar 

  • Thampi SV, Yamamoto M, Tsunoda RT, Otsuka Y, Tsugawa T, Uemoto J, Ishii M (2009) First observations of large-scale wave structure and equatorial spread F using CERTO radio beacon on the C/NOFS satellite. Geophys Res Lett 36:L18111. doi:10.1029/2009GL039887

    Article  Google Scholar 

  • Tsunoda RT (1985) Control of the seasonal and longitudinal occurrence of equatorial scintillation by longitudinal gradient in integrated Pedersen conductivity. J Geophys Res 90:447–456

    Article  Google Scholar 

  • Tsunoda RT (2008) Satellite traces: an ionogram signature for large scale wave structure and a precursor for equatorial spread F. Geophys Res Lett 35:L20110. doi:10.1029/2008GL035706

    Article  Google Scholar 

  • Tsunoda RT (2010) On seeding equatorial spread F during solstices. Geophys Res Lett 37:L05102. doi:10.1029/2010GL042576

    Article  Google Scholar 

  • Tsunoda RT, White BR (1981) On the generation and growth of equatorial backscatter plumes, 1- Wave structure in the bottomside F layer. J Geophys Res 86:3610–1981

    Google Scholar 

  • Tulasi Ram S, Rama Rao PVS, Prasad DSVVD, Niranjan K, Gopi Krishna S, Sridharan R, Ravindran S (2008) Local time dependent response of postsunset ESF during geomagnetic storms. J Geophys Res 113:A07310. doi:10.1029/2007JA012922

    Google Scholar 

  • Vadas SL, Liu H-L (2009) The generation of large-scale gravity waves and neutral winds in the thermosphere from the dissipation of convectively-generated gravity waves. J Geophys Res 114:A10310. doi:10.1029/2009JA014108

    Article  Google Scholar 

  • Vincent RA (1993) Long-period motions in the equatorial mesosphere. J Atmos Solar-Terr Phys 55:1067–1080

    Article  Google Scholar 

  • Vineeth C, Pant TK, Devasia CV et al (2007) Atmosphere-ionosphere coupling observed over the dip equatorial MLTI region through the quasi 16-day wave. Geophys Res Lett 34(12):L12102, June 16 2007

    Article  Google Scholar 

  • Woodman RF, La Hoz C (1976) Radar observations of F region equatorial irregularities. J Geophys Res 81:5447

    Article  Google Scholar 

  • Yokoyama T, Fukao S, Yamamoto M (2004) Relationship of the onset of equatorial F region irregularities with the sunset terminator observed with the Equatorial Atmosphere Radar. Geophys Res Lett 31:L24804. doi:10.1029/2004GL021529

    Google Scholar 

Download references

Acknowledgements

MAA wishes to acknowledge the supports received from the CNPq (Conselho Nacional de Pesquisa e Desenvolvimento) through the grant: 300883/2008-00. EAK wish to acknowledge the support from FAPESP through the grant 07/00104-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mangalathayil Ali Abdu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Abdu, M.A., Kherani, E.A. (2011). Coupling Processes in the Equatorial Spread F/Plasma Bubble Irregularity Development. In: Abdu, M., Pancheva, D. (eds) Aeronomy of the Earth's Atmosphere and Ionosphere. IAGA Special Sopron Book Series, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0326-1_16

Download citation

Publish with us

Policies and ethics