Advertisement

Three-Dimensional Modeling of Equatorial Spread F

  • J.D. HubaEmail author
  • G. Joyce
  • J. Krall
Chapter
Part of the IAGA Special Sopron Book Series book series (IAGA, volume 2)

Abstract

The Naval Research Laboratory (NRL) has recently developed a three-dimensional code to study equatorial spread F (ESF). The code is based on the comprehensive NRL 3D ionosphere model SAMI3 and includes a potential equation to self-consistently solve for the electric field. The model assumes equipotential field lines so a 2D electrodynamic problem is considered. Results are presented showing the evolution of atomic and molecular ions, as well as that of the electron and ion temperatures during ESF.

Keywords

Electron Temperature Naval Research Laboratory Neutral Wind Magnetic Equator Plasma Bubble 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This research has been supported by NASA and ONR.

References

  1. Banks PM, Kockarts G (1973) Aeronomy. Academic, San Diego, CAGoogle Scholar
  2. Fejer BG, Scherliess L (1995) Time-dependent response of equatorial ionospheric electric fields to magnetospheric disturbances. Geophys Res Lett 22(7):851CrossRefGoogle Scholar
  3. Haerendel G (1974) Theory of equatorial spread F, preprint, Max-Planck Inst. für Extraterr. Phys Munich, GermanyGoogle Scholar
  4. Hanson WB, Sanatani S (1973) Large Ne gradients below the equatorial F peak. J Geophys Res 78:1167CrossRefGoogle Scholar
  5. Huba JD, Joyce G (2006) Equatorial spread F modeling: multiple bifurcated structures, secondary instabilities, large density ‘bite-outs,’ and supersonice flows. Geophys Res Lett 34:L07105. doi:10.1029/2006GL028519CrossRefGoogle Scholar
  6. Huba JD, Joyce G, Fedder JA (2000a) SAMI2 (Sami2 is Another Model of the Ionosphere): a new low-latitude ionosphere model. J Geophys Res 105:23035CrossRefGoogle Scholar
  7. Huba JD, Joyce G, Fedder JA (2000b) The formation of an electron hole in the topside equatorial ionosphere. Geophys Res Lett 27:181CrossRefGoogle Scholar
  8. Huba JD, Joyce G, Krall J (2008) Three-dimensional equatorial spread F modeling. Geophys Res Lett 35:L10102. doi:10.1029/2008GL033509CrossRefGoogle Scholar
  9. Huba JD, Krall J, Joyce G (2009a) Atomic and molecular ion dynamics during equatorial spread F. Geophys Res Lett 36:L10106. doi:10.1029/2008GL033059CrossRefGoogle Scholar
  10. Huba JD, Krall J, Joyce G (2009b) Ion and electron temperature evolution during equatorial spread F. Geophys Res Lett 36:L15102. doi:10.1029/2009GL038872CrossRefGoogle Scholar
  11. Huba JD, Ossakow SL, Krall J, Joyce G, England SL (2009c) Three-dimensional equatorial spread F modeling: zonal neutral wind effects. Geophys Res Lett 36:L19106. doi:10.1029/2009GL040284CrossRefGoogle Scholar
  12. Huba JD, Joyce G (2010) Global modeling of equatorial plasma bubbles. Geophys Res. Lett. 37:L17104.doi:10.1029/2010GL044281Google Scholar
  13. Hysell DL (2000) An overview and synthesis of plasma irregularities in equatorial spread F. J Atmos Solar-Terr Phys 62:1037CrossRefGoogle Scholar
  14. Krall J, Huba JD, Joyce G, Yokoyama T (2009a) Density enhancements associated with equatorial spread F. Ann GeophysGoogle Scholar
  15. Krall J, Huba JD, Joyce G, Zalesak ST (2009b) Three-dimensional simulation of equatorial spread F with meridional wind effects. Ann Geophys 27:1821CrossRefGoogle Scholar
  16. Krall J, Huba JD, Ossakow SL, Joyce G (2010) Why do equatorial bubbles stop rising? submitted to Geophys Res LettGoogle Scholar
  17. Millward GH, Moffett RJ, Quegan W, Fuller-Rowell TJ (1996) A coupled thermospheric-ionospheric-plasmasphere model (CTIP). In: Schunk RW (ed) STEP: handbook of ionospheric models. Utah State University, Logan, UT, p 173Google Scholar
  18. Ossakow SL (1981) Spread F theories: a review. J Atmos Solar-Terr Phys 43:437CrossRefGoogle Scholar
  19. Ossakow SL, Zalesak ST, McDonald BE, Chaturvedi PK (1979) Nonlinear spread F: dependence of altitude of F peak and bottomside background electron density gradient scale length. J Geophys Res 84:17CrossRefGoogle Scholar
  20. Oyama K-I, Schlegel K, Watanabe S (1988) Temperature structure of the plasma bubbles in the low latitude ionosphere around 600 km altitude. Planet Space Sci 36:553CrossRefGoogle Scholar
  21. Park J, Min KW, Kim VP, Kil H, Su S-Y, Chao CK, Lee J-J (2008) Equatorial plasma bubbles with enhanced ion and electron temperatures. J Geophys Res 113:A09318. doi:10.1029/2008JA013067CrossRefGoogle Scholar
  22. Scannapieco AJ, Ossakow SL (1976) Nonlinear equatorial spread F. Geophys Res Lett 3:451CrossRefGoogle Scholar
  23. Sekar R (2003) Plasma instabilities and their simulations in the equatorial F region – recent results. Space Sci Rev 107:251CrossRefGoogle Scholar
  24. Zalesak ST, Ossakow SL (1980) Nonlinear equatorial spread F: spatially large bubbles resulting from large horizontal scale initial perturbations. J Geophys Res 85:2131CrossRefGoogle Scholar
  25. Zalesak ST, Ossakow SL, Chaturvedi PK (1982) Nonlinear equatorial spread F: the effect of neutral winds and background conductivity. J Geophys Res 87:151CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Naval Research LaboratoryWashingtonUSA
  2. 2.Icarus Research, Inc.BethesdaUSA

Personalised recommendations