Electrodynamics of Ionosphere–Thermosphere Coupling

  • Arthur D. RichmondEmail author
Part of the IAGA Special Sopron Book Series book series (IAGA, volume 2)


An overview of ionosphere-thermosphere electrodynamic coupling is presented. Collisions between the charged and neutral constituents of the upper atmosphere couple their respective dynamics and energetics. Magnetic stresses readily transfer momentum and energy over long distances along geomagnetic-field lines, accompanied by electric fields and currents. Consequently, the E and F regions of the ionosphere are strongly coupled, and momentum is transferred between the lower and upper thermosphere through the currents and their associated ion drag. Electrical conductivity mediates the degree of ion-neutral coupling. Conductivity is highly variable, and is itself affected by the electric field in various ways. Thermospheric winds drive the ionospheric wind dynamo. The winds are created by daily absorption of solar radiation in the thermosphere, by upward-propagating solar and lunar tides, by ion-drag acceleration at high latitudes, and by Joule heating at high latitudes. Electric current flows globally in the ionosphere and along geomagnetic-field lines through the magnetosphere. Interactions between the ion and neutral motions produce feedbacks that affect the dynamics of both components. Simulation models of thermosphere-ionosphere-electrodynamic interactions provide powerful tools for investigating the nature of these interactions, and for testing how well the uncertain model inputs and the physics incorporated in the models are able to predict observed features of the ionosphere and thermosphere.


Magnetic Storm Hall Conductivity Equatorial Electrojet Magnetic Perturbation Coriolis Acceleration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



I thank Astrid Maute for providing Fig. 13.2. The National Center for Atmospheric Research is sponsored by the National Science Foundation (NSF). This work was supported in part by NSF Award No. ATM-0836386, NASA grant NNX09AN57G, and AFOSR Contract FA9550-08-C-0046.


  1. Akasofu SI, DeWitt RN (1965) Dynamo action in the ionosphere and motions of the magnetospheric plasma, 3. The Pedersen conductivity, generalized to take account of acceleration of the neutral gas. Planet Space Sci 13:737–744CrossRefGoogle Scholar
  2. Alken P, Maus S (2010a) Electric fields in the equatorial ionosphere derived from CHAMP satellite magnetic field measurements. J Atmos Solar-Terr Phys 72:319–326CrossRefGoogle Scholar
  3. Alken P, Maus S (2010b) Relationship between the ionospheric eastward electric field and the equatorial electrojet. Geophys Res Lett 37:L04104. http://doi:1029/2009GL041989 CrossRefGoogle Scholar
  4. Anderson D, Anghel A, Chau JL, Yumoto K, Pyle R, Munakata K, Yasue S, Kato C, Akahane S, Koyama M, Fujii Z, Duldig ML, Humble JE, Silva MR, Trivedi NB, Gonzalez WD, Schuch NJ (2006) Global, low-latitude, vertical E×B drift velocities inferred from daytime magnetometer observations. Space Weather 4:S08003. http://doi:1029/2005SW000193 CrossRefGoogle Scholar
  5. Anderson D, Anghel A, Yumoto K, Ishitsuka M, Kudeki E (2002) Estimating daytime vertical E×B drift velocities in the equatorial F-region using ground-based magnetometer observations. Geophys Res Lett 29:10.1029/2001GL014562Google Scholar
  6. Axford WI, Hines CO (1961) A unifying theory of high-latitude geophysical phenomena and geomagnetic storms. Can J Phys 39:1433–1464Google Scholar
  7. Baker WG, Martyn DF (1953) Electric currents in the ionosphere, I. The conductivity. Phil Trans R Soc A246:281–294Google Scholar
  8. Banks PM (1972) Magnetospheric processes and the behavior of the neutral atmosphere. Space Res 12:1051–1067Google Scholar
  9. Banks PM, Yasuhara F (1978) Electric fields and conductivity in the nighttime E-region: a new magnetosphere-ionosphere-atmosphere coupling effect. Geophys Res Lett 5(12):1047–1050CrossRefGoogle Scholar
  10. Banks PM, Schunk RW, Raitt WJ (1974) NO+ and O+ in the high latitude F-region. Geophys Res Lett 1:239–242CrossRefGoogle Scholar
  11. Bartels J, Johnston HF (1940) Geomagnetic tides in horizontal intensity at Huancayo. Terr Magn Atmos Elect 45:269CrossRefGoogle Scholar
  12. Bauske R, Noel S, Proelss GW (1997) Ionospheric storm effects in the nighttime E region caused by neutralized ring current particles. Ann Geophys 15:300–305CrossRefGoogle Scholar
  13. Bilitza D (ed) (1990) International Reference Ionosphere 1990, National Space Science Data Center publication 90–22Google Scholar
  14. Blanc M, Richmond AD (1980) The ionospheric disturbance dynamo. J Geophys Res 85:1669–1686CrossRefGoogle Scholar
  15. Buchert SC, Hagfors T, McKenzie JF (2006) Effect of electrojet irregularities on DC current flow. J Geophys Res 111:A02305. http://doi:1029/2004JA010788 CrossRefGoogle Scholar
  16. Buchert SC, Tsuda T, Fujii R, Nozawa S (2008) The Pedersen current carried by electrons: a non-linear response of the ionosphere to magnetospheric forcing. Ann Geophys 26:2837–2844CrossRefGoogle Scholar
  17. Burnside RG, Walker JCG, Behnke RA, Gonzales CA (1983) Polarization electric fields in the nighttime F layer at Arecibo. J Geophys Res 88:6259–6266CrossRefGoogle Scholar
  18. Deng W, Killeen TL, Burns AG, Roble RG, Slavin JA, Wharton LE (1993) The effects of neutral inertia on ionospheric currents in the high-latitude thermosphere following a geomagnetic storm. J Geophys Res 98:7775–7790CrossRefGoogle Scholar
  19. Denisenko VV, Biernat HK, Mezentsev AV, Shaidurov VA, Zamay SS (2008) Modification of conductivity due to acceleration of the ionospheric medium. Ann Geophys 26:2111–2130CrossRefGoogle Scholar
  20. Dickinson RE, Ridley EC, Roble RG (1975) Meridional circulation in the thermosphere, I. Equinox conditions. J Atmos Sci 32:1737–1754CrossRefGoogle Scholar
  21. Eccles JV (1998) A simple model of low-latitude electric fields. J Geophys Res 103:26699–26708CrossRefGoogle Scholar
  22. Eccles JV (2004) The effect of gravity and pressure in the electrodynamics of the low-latitude ionosphere. J Geophys Res 109:A05304. http://doi:1029/2003JA010023 CrossRefGoogle Scholar
  23. Emmert JT, Fejer BG, Shepherd GG, Solheim BH (2002) Altitude dependence of middle and low-latitude daytime thermospheric disturbance winds measured by WINDII, J Geophys Res 107(A12):1483. http://doi:1029/2002JA009646 CrossRefGoogle Scholar
  24. Evans DS, Maynard NC, Trøim J, Jacobsen T, Egeland A (1977) Auroral vector electric field and particle comparisons, 2. Electrodynamics of an arc. J Geophys Res 82:2235–2249CrossRefGoogle Scholar
  25. Fambitakoye O, Mayaud PN, Richmond AD (1976) Equatorial electrojet and regular daily variation SR, III. Comparison of observations with a physical model. J Atmos Solar-Terr Phys 38:113–121CrossRefGoogle Scholar
  26. Fang TW, Richmond AD, Liu JY, Maute A (2008) Wind dynamo effects on ground magnetic perturbations and vertical drifts. J Geophys Res 113:A11313. http://doi:1029/2008JA013513 CrossRefGoogle Scholar
  27. Fejer BG (1993) F region plasma drifts over Arecibo: solar cycle, seasonal, and magnetic activity effects. J Geophys Res 98:13645–13652CrossRefGoogle Scholar
  28. Fejer BG, Scherliess L (1995) Time dependent response of equatorial ionospheric electric fields to magnetospheric disturbances. Geophys Res Lett 22:851–854CrossRefGoogle Scholar
  29. Fejer BG, de Paula ER, Heelis RA, Hanson WB (1995) Global equatorial ionospheric vertical plasma drifts measured by the AE-E satellite. J Geophys Res 100:5769–5776CrossRefGoogle Scholar
  30. Fejer BG, de Souza J, Santos AS, Costa Pereira AE (2005) Climatology of F region zonal plasma drifts over Jicamarca. J Geophys Res 110:A12310. http://doi:1029/2005JA011324 CrossRefGoogle Scholar
  31. Footitt RJ, Bailey GJ, Moffett RJ (1983) Ion transport in the mid-latitude F1-region. Planet Space Sci 31:671–687CrossRefGoogle Scholar
  32. Forbes JM (1981) The equatorial electrojet. Rev Geophys Space Phys 19:469–504CrossRefGoogle Scholar
  33. Forbes JM (1995) Tidal and planetary waves. In: Johnson RM, Killeen TL (eds) The upper mesosphere and lower thermosphere. American Geophysical Union, Washington, DC, pp 67–87Google Scholar
  34. Forbes JM, Harel M (1989) Magnetosphere-thermosphere coupling: an experiment in interactive modeling. J Geophys Res 94:2631–2644CrossRefGoogle Scholar
  35. Forbes JM, Vial F (1991) Semidiurnal tidal climatology of the E region. J Geophys Res 96:1147–1157CrossRefGoogle Scholar
  36. Foster JC, St-Maurice J-P, Abreu VJ (1983) Joule heating at high latitudes. J Geophys Res 88:4885–4896CrossRefGoogle Scholar
  37. Fuller-Rowell T, Evans DS (1987) Height-integrated Pedersen and Hall conductivity patterns inferred from the TIROS-NOAA satellite data. J Geophys Res 92:7606–7618CrossRefGoogle Scholar
  38. Fuller-Rowell TJ, Quegan S, Rees D, Moffett RJ, Bailey GJ (1987) Interactions between neutral thermospheric composition and the polar ionosphere using a coupled ionosphere-thermosphere model. J Geophys Res 92:7744–7748CrossRefGoogle Scholar
  39. Gagnepain J, Crochet M, Richmond AD (1977) Comparison of equatorial electrojet models. J Atmos Solar-Terr Phys 39:1119–1124CrossRefGoogle Scholar
  40. Hagan ME, Maute A, Roble RG (2009) Tropospheric tidal effects on the middle and upper atmosphere. J Geophys Res 114:A01302. http://doi:1029/2008JA013637 CrossRefGoogle Scholar
  41. Harper RM, Walker JCG (1977) Comparison of electrical conductivities in the E-and F-regions of the nocturnal ionosphere. Planet Space Sci 25:197–199CrossRefGoogle Scholar
  42. Heelis RA, Coley WR (1992) East-west ion drifts at mid-latitudes observed by dynamics explorer 2. J Geophys Res 97:19461–19469CrossRefGoogle Scholar
  43. Huang C-M, Richmond AD, Chen M-Q (2005) Theoretical effects of geomagnetic activity on low-latitude ionospheric electric fields. J Geophys Res 110:A05312. http://doi:1029/2004JA010994 CrossRefGoogle Scholar
  44. Johnson RM, Virdi TS (1991) High-latitude lower thermospheric neutral winds at EISCAT and Sondrestrom during LTCS 1. J Geophys Res 96:1099–1116CrossRefGoogle Scholar
  45. Killeen TL, Roble RG (1984) An analysis of the high-latitude thermospheric wind pattern calculated by a thermospheric general circulation model, 1. Momentum forcing. J Geophys Res 89:7509–7522CrossRefGoogle Scholar
  46. Killeen TL, Roble RG (1988) Thermosphere dynamics: contributions from the first 5 years of the dynamics explorer program. Rev Geophys 26:329–367CrossRefGoogle Scholar
  47. Killeen TL, Nardi B, Purcell PN, Roble RG, Fuller-Rowell TJ, Rees D (1992) Neutral winds in the lower thermosphere from dynamics explorer 2. Geophys Res Lett 19:1093–1096CrossRefGoogle Scholar
  48. Klimenko MV, Klimenko VV, Bryukhanov VV (2006) Numerical simulation of the electric field and zonal current in the Earth’s ionosphere: the dynamo field and equatorial electrojet. Geomag Aeron 46(4):457–466. http://doi:10.1134/S0016793206040074 (Engl. trans.)CrossRefGoogle Scholar
  49. Kwak Y-S, Richmond AD (2007) An analysis of the momentum forcing in the highlatitude lower thermosphere. J Geophys Res 112:A01306. http://doi:1029/2006JA011910 CrossRefGoogle Scholar
  50. Lyons LR, Killeen TL, Walterscheid RL (1985) The neutral wind “flywheel” as a source of quiet time, polar-cap currents. Geophys Res Lett 12:101–104CrossRefGoogle Scholar
  51. Maruyama N, Richmond AD, Fuller-Rowell TJ, Codrescu MV, Sazykin S, Toffoletto FR, Spiro RW, Millward GH (2005) Interaction between direct penetration and disturbance dynamo electric fields in the storm-time equatorial ionosphere. Geophys Res Lett 32:L17105. http://doi:1029/2005GL023763 CrossRefGoogle Scholar
  52. Maruyama T, Nakamura M (2007) Conditions for intense ionospheric storms expanding to lower midlatitudes. J Geophys Res 112:A05310. http://doi:1029/2006JA012226 CrossRefGoogle Scholar
  53. Matsushita S (1967) Lunar tides in the ionosphere. In: Flügge S (ed) Handbuch der Physik, vol 49/2. Springer, Berlin, p 547Google Scholar
  54. Merkin VG, Milikh G, Papadopoulos K, Lyon J, Dimant YS, Sharma AS, Goodrich C, Wiltberger M (2005) Effect of anomalous electron heating on the transpolar potential in the LFM global MHD model. Geophys Res Lett 32:L22101. http://doi:1029/2005GL023315 CrossRefGoogle Scholar
  55. Millward GH, Müller-Wodarg ICF, Aylward AD, Fuller-Rowell TJ, Richmond AD, Moffett RJ (2001) An investigation into the influence of tidal forcing on F region equatorial vertical ion drift using a global ionosphere-thermosphere model with coupled electrodynamics. J Geophys Res 106:24,733–24,744CrossRefGoogle Scholar
  56. Namgaladze AA, Korenkov Yu N, Klimenko VV, Karpov IV, Bessarab FS, Surotkin VA, Glushchenko TA, Naumova NM (1988) Global model of the thermosphereionosphere- protonosphere system. Pure Appl Geophys 127:219–254CrossRefGoogle Scholar
  57. Pancheva D, Merzlyakov E, Mitchell NJ, Portnyagin Y, Manson AH, Jacobi C, Meek CE, Luo Y, Clark RR, Hocking WK, MacDougall J, Muller HG, Kurschner D, Jones GOL, Vincent RA, Reid IM, Singer W, Igarashi K, Fraser GI, Fahrutdinova AN, Stepanov AM, Poole LMG, Malinga SB, Kashcheyev BL, Oleynikov AN (2002) Globalscale tidal variability during the PSMOS campaign of June–August 1999: interaction with planetary waves. J Atmos Solar-Terr Phys 64:1865–1896CrossRefGoogle Scholar
  58. Pedatella NM, Forbes JM (2009) Modulation of the equatorial F-region by the quasi- 16-day planetary wave. Geophys Res Lett 36:L09105. http://doi:1029/2009GL037809 CrossRefGoogle Scholar
  59. Pesnell WD, Omidvar K, Hoegy WR (1993) Momentum transfer collision frequency of O+–O. Geophys Res Lett 20:1343–1346CrossRefGoogle Scholar
  60. Peymirat C, Richmond AD, Roble RG (2002) Neutral wind influence on the electrodynamic coupling between the ionosphere and the magnetosphere. J Geophys Res 107(A1). 10.1029/2001JA900106CrossRefGoogle Scholar
  61. Picone JM, Hedin AE, Drob DP, Aikin AC (2002) NRLMSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues. J Geophys Res 107(A12):1468. http://doi:1029/2002JA009430 CrossRefGoogle Scholar
  62. Raeder J, Wang Y, Fuller-Rowell TJ (2001) Geomagnetic storm simulation with a coupled magnetosphere-ionosphere-thermosphere model. In: Song P, Singer HJ, Siscoe G (eds) Space weather: progress and challenges in research and applications. Geophysical monograph series, vol 125. American Geophysical Union, Washington, DC, pp 377–384Google Scholar
  63. Raghavarao R, Sridharan R, Suhasini R (1984) The importance of vertical ion currents on the nighttime ionization in the equatorial electrojet. J Geophys Res 89:11033–11037CrossRefGoogle Scholar
  64. Rastogi RG (1989) The equatorial electrojet: magnetic and ionospheric effects. In: Jacobs JA (ed) Geomagnetism, volume 2. Academic, San Diego, CA, p 461Google Scholar
  65. Reddy CA (1989) The equatorial electrojet. Pure Appl Geophys 131:485–508CrossRefGoogle Scholar
  66. Reddy CA, Devasia CV (1981) Height and latitude structure of electric fields and currents due to local east-west winds in the equatorial electrojet. J Geophys Res 86:5751–5767CrossRefGoogle Scholar
  67. Ren Z, Wan W, Liu L (2009) ITEM-IGGCAS: a new global coupled ionospherethermosphere-electrodynamics model. J Atmos Solar-Terr Phys 71:2064–2076. http://doi:1016/j.jastp.2009.09.015 CrossRefGoogle Scholar
  68. Richmond AD (1995a) The ionospheric wind dynamo: effects of its coupling with different atmospheric regions. In: Johnson RM, Killeen TL (eds) The upper mesosphere and lower thermosphere. American Geophysical Union, Washington, DC, pp 49–65Google Scholar
  69. Richmond AD (1995b) Ionospheric electrodynamics. In: Volland H (ed) Handbook of atmospheric electrodynamics, volume II. CRC Press, Boca Raton, FL, pp 249–290Google Scholar
  70. Richmond AD, Lathuillère C, Vennerstroem S (2003a)Winds in the high-latitude lower thermosphere: dependence on the interplanetary magnetic field. J Geophys Res 108(A2):1006. http://doi:1029/2002JA009493 CrossRefGoogle Scholar
  71. Richmond AD, Peymirat C, Roble RG (2003b) Long-lasting disturbances in the equatorial ionospheric electric field simulated with a coupled magnetosphere-ionospherethermosphere model. J Geophys Res 108(A3):1118. http://doi:1029/2002JA009758 CrossRefGoogle Scholar
  72. Richmond AD, Ridley EC, Roble RG (1992) A thermosphere/ionosphere general circulation model with coupled electrodynamics. Geophys Res Lett 19:601–604CrossRefGoogle Scholar
  73. Ridley AJ, Richmond AD, Gombosi TI, De Zeeuw DL, Clauer CR (2003) Ionospheric control of the magnetospheric configuration: Thermospheric neutral winds. J Geophys Res 108(A8):1328. http://doi:1029/2002JA009464 CrossRefGoogle Scholar
  74. Rishbeth H (1971) Polarization fields produced by winds in the equatorial F-region. Planet Space Sci 19:357–369CrossRefGoogle Scholar
  75. Roble RG (1992) The polar lower thermosphere. Planet Space Sci 40:271–297CrossRefGoogle Scholar
  76. Roble RG, Ridley EC, Richmond AD, Dickinson RE (1988) A coupled thermosphere/ionosphere general circulation model. Geophys Res Lett 15:1325–1328CrossRefGoogle Scholar
  77. Rogister A (1971) Nonlinear theory of ‘Type I’ irregularities in the equatorial electrojet. J Geophys Res 76(31):7754–7760CrossRefGoogle Scholar
  78. Ronchi C, Sudan RN, Similon PL (1990) Effect of short-scale turbulence on kilometer wavelength irregularities in the equatorial electrojet. J Geophys Res 95:189–200CrossRefGoogle Scholar
  79. Rowe JF Jr, Mathews JD (1973) Low-latitude nighttime E region conductivities. J Geophys Res 78:7461–7470CrossRefGoogle Scholar
  80. Sastri JH (1988) Equatorial electric fields of ionospheric disturbance dynamo origin. Ann Geophys 6:635–642Google Scholar
  81. Singhal RP (1991) The effect of the electric field and neutral winds on E-region ion densities and conductivities at low latitudes. J Atmos Solar-Terr Phys 53:949–957CrossRefGoogle Scholar
  82. Stening RJ (1986) Inter-relations between current and electron density profiles in the equatorial electrojet and effects of neutral density changes. J Atmos Solar-Terr Phys 48:163–170CrossRefGoogle Scholar
  83. Takeda M, Araki T (1985) Electric conductivity of the ionosphere and nocturnal currents. J Atmos Solar-Terr Phys 47:601–609CrossRefGoogle Scholar
  84. Volland H (1976a) Coupling between the neutral wind and the ionospheric dynamo current. J Geophys Res 81:1621–1628CrossRefGoogle Scholar
  85. Volland H (1976b) The atmospheric dynamo. J Atmos Solar-Terr Phys 38:869–877CrossRefGoogle Scholar
  86. Volland H (1988) Atmospheric tidal and planetary waves. Kluwer, DordrechtGoogle Scholar
  87. Volland H, Mayr HG (1971) Response of the thermospheric density to auroral heating during geomagnetic disturbances. J Geophys Res 76:3764–3776CrossRefGoogle Scholar
  88. Wang W, Burns AG, Wiltberger M, Solomon SC, Killeen TL (2007) An analysis of neutral wind generated currents during geomagnetic storms. J Atmos Solar-Terr Phys 69:159–165CrossRefGoogle Scholar
  89. Yamashita S, Iyemori T (2002) Seasonal and local time dependences of the interhemispheric field-aligned currents deduced from the Ørsted satellite and the ground geomagnetic observations. J Geophys Res 107(A11):1372. http://doi:1029/2002JA009414 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.High Altitude Observatory, National Center for Atmospheric ResearchBoulderUSA

Personalised recommendations