Advertisement

Mesosphere–Ionosphere Coupling Processes Observed in the F Layer Bottom-Side Oscillation

  • Hisao TakahashiEmail author
  • Sharon L. Vadas
  • C.M. Wrasse
  • Michael J. Taylor
  • P.-D. Pautet
  • A.F. Medeiros
  • R.A. Buriti
  • Eurico R. de Paula
  • Mangalathayil Ali Abdu
  • Inez S. Batista
  • I. Paulino
  • P.A. Stamus
  • David C. Fritts
Chapter
Part of the IAGA Special Sopron Book Series book series (IAGA, volume 2)

Abstract

During the Spread FEx campaign, under the NASA Living with a star (ILWS) program which was carried out in the South American Magnetic Equatorial region from September to November 2005, we observed formation of the bottom-type spread F and simultaneous occurrence of mesospheric gravity wave events. The events were monitored by the ionosonde, coherent radar and airglow OI 630.0 nm and OH imager. It is found that the bottom-type scattering layer has a wave form generated most probably by local gravity waves. Reverse ray-tracing of the observed gravity waves indicate their possible sources in the troposphere or thermosphere. Forward ray-tracing indicates their penetration into the ionosphere. The present work summarizes the observational evidence and results of the data analysis and discusses the mesosphere–ionosphere coupling processes.

Keywords

Gravity Wave Lower Thermosphere Plasma Bubble Meteor Radar Rayleigh Taylor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors thank for several institutions and observatory staffs by whom the ground based observations were carried out. Thanks are also due to Maria Goreti S. Aquino who reduced the ionogram data. São Luis VHF radar was developed and installed by the support of FAPECP under the process 2004/01065-0. The RTI images were prepared by Eng. Lazaro A. P. Camargo. We thank for him. The SpreadFEx field program and data analysis were supported by NASA under contracts NNH04CC67C and NAS5-02036. The present project was also partially supported by CNPq (Conselho Nacional de Desenvolvimento Cietífico e Tecnológico) under contract 301876/2007-0.

References

  1. Abdu MA (2001) Outstanding problems in the equatorial ionosphere-thermosphere system relevant to spread F. J Atmos Solar-Terr Phys 63(9):869–884CrossRefGoogle Scholar
  2. Abdu MA (2005) Equatorial ionosphere-thermosphere system: electrodynamics and irregularities. Adv Space Res 35:771–787CrossRefGoogle Scholar
  3. Abdu MA, Kherani EA, Batista S et al (2009) Gravity wave initiation of equatorial spread F/plasma bubble irregularities based on observational data from the SpreadFEx campaign. Ann Goephys 27:2607–2622CrossRefGoogle Scholar
  4. de Paula ER, Hysell DL (2004) The São Luís 30 MHz coherent scatter ionospheric radar: system description and initial results. Radio Sci 39:RS1014. doi:10.1029/2003RS002914CrossRefGoogle Scholar
  5. Fritts DC, Abdu MA, Batista IS et al (2009) Overview and summary of the spread F experiment (SpreadFEx). Ann Geophys 27:2141–2155CrossRefGoogle Scholar
  6. Fritts DC, Vadas SL (2008) Gravity wave penetration into the thermosphere: sensitivity to solar cycle variations and mean winds. Ann Geophys 26:3841–3861CrossRefGoogle Scholar
  7. Fritts DC, Vadas SL, Yamada Y (2002) An estimate of strong local body forcing and gravity wave radiation based on OH airglow and meteor radar observations. Geophys Res Lett 29(10). doi:10.1029/2001GL013753Google Scholar
  8. Hysell DL, Burcham JD (1998) JULIA radar studies of equatorial spread F. J Geophys Res 103(A12):29155–29167CrossRefGoogle Scholar
  9. Hysell DL, Chun J, Chau JL (2004) Bottom-type scattering layers and equatorial spread F. Ann Geophys 22:4061–4069CrossRefGoogle Scholar
  10. Hysell DL, Larsen MF, Swenson CM et al (2006) Rocket and radar investigation of background electrodynamics and bottom-type scattering layers at the onset of equatorial spread F. Ann Geophys 24:1387–1400CrossRefGoogle Scholar
  11. Kudeki E, Akgiray A, Milla M et al (2007) Equatorial spread-F initiation: post-sunset vortex, thermospheric winds, gravity waves. J Atmos Solar-Terr Phys 69:2416–2427CrossRefGoogle Scholar
  12. Kudeki E, Bhattacharyya S (1999) Post-sunset vortex in equatorial F-region plasma drifts and implications for bottomside spread-F. J Geophys Res 104:28163–28170CrossRefGoogle Scholar
  13. Takahashi H, Abdu MA, Taylor MJ et al (2010) Equatorial ionosphere bottom-type spread F observed by OI 630.0 nm airglow imaging. Geophys Res Lett 37. doi:10.1029/2009GL041802Google Scholar
  14. Takahashi H, Taylor MJ, Pautet P-D et al (2009) Simultaneous observation of ionospheric plasma bubbles and mesospheric gravity waves during the SpreadFEx campaign. Ann Geophys 27:1477–1487CrossRefGoogle Scholar
  15. Taylor MJ, Pautet PD, Medeiros AF et al (2009) Characterizing mesospheric gravity waves near the magnetic equator, Brazil during the SpreadFEx campaign. Ann Geophys 27:461–472CrossRefGoogle Scholar
  16. Tsunoda RT (1981) Time evolution and dynamics of equatorial backscatter plumes, 1. Growth phase. J Gephys Res 86:139CrossRefGoogle Scholar
  17. Tsunoda RT (2008) Satellite traces: an ionogram signature for large-scale wave structure and a precursor for equatorial spread F. Geophys Res Lett 35. doi:101029/2008GL035706Google Scholar
  18. Vadas SL (2007) Horizontal and vertical propagation and dissipation of gravity waves in the thermosphere from lower atmospheric and thermospheric sources. J Geophys Res 112. doi:10.1029/2006JA011845Google Scholar
  19. Vadas SL (2010) Downward-propagating secondary gravity waves in the OH airglow layer from thermospheric body forces resulting from deep convection. J Geophys Res. submittedGoogle Scholar
  20. Vadas SL, Crowley G (2010) Sources of the traveling ionospheric disturbances observed by the ionospheric TIDDBIT sounder near Wallops Island on October 30, 2007. J Geophys Res 115. doi:10.1029/2009JA015053Google Scholar
  21. Vadas SL, Fritts DC (2004) Thermospheric responses to gravity waves arising from mesoscale convective complexes. J Atmos Solar-Terr Phys 66:781–804CrossRefGoogle Scholar
  22. Vadas SL, Fritts DC (2006) Influence of solar variability on gravity wave structure and dissipation in the thermosphere from tropospheric convection. J Geophys Res 111. doi:10.1029/2005JA011510Google Scholar
  23. Vadas SL, Taylor MJ, Pautet P-D et al (2009) Convection: the likely source of the medium-scale gravity waves observed in the OH airglow layer near Brasilia, Brazil, during the SpreadFEx campaign. Ann Geophys 27:231–259CrossRefGoogle Scholar
  24. Woodman RF, LaHoz C (1976) Radio observations of F-region equatorial irregularities. J Geophys Res 81:5447–5466CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Hisao Takahashi
    • 1
    Email author
  • Sharon L. Vadas
    • 2
  • C.M. Wrasse
    • 3
  • Michael J. Taylor
    • 4
  • P.-D. Pautet
    • 4
  • A.F. Medeiros
    • 5
  • R.A. Buriti
    • 5
  • Eurico R. de Paula
    • 1
  • Mangalathayil Ali Abdu
    • 6
  • Inez S. Batista
    • 6
  • I. Paulino
    • 6
  • P.A. Stamus
    • 2
  • David C. Fritts
    • 2
  1. 1.Instituto Nacional de Pesquisas Espaciais (INPE)São José dos CamposBrazil
  2. 2.Colorado Research Associates DivisionNorthWest Research AssociatesBoulderUSA
  3. 3.Universidade de Vale do Paraíba (UNIVAP)São José dos CamposBrazil
  4. 4.Center for Atmospheric and Space Science, Utah State UniversityLoganUSA
  5. 5.Universidade Federal de Campina Grande (UFCG)Campina GrandeBrazil
  6. 6.National Institute for Space ResearchSão José dos CamposBrazil

Personalised recommendations