Advertisement

The Acoustic Gravity Wave Induced Disturbances in the Equatorial Ionosphere

  • E. Alam KheraniEmail author
  • Mangalathayil Ali Abdu
  • Dave C. Fritts
  • Eurico R. de Paula
Chapter
Part of the IAGA Special Sopron Book Series book series (IAGA, volume 2)

Abstract

The role of acoustic gravity waves (AGWs) to excite atmospheric and ionospheric disturbances is examined in this work. These waves are launched in the atmosphere by tropospheric thermal sources and convective activity. An alternative fully time-spatial dependent nonlinear wave equation of acoustic gravity wave is derived and solved numerically using implicit finite-difference scheme. Their propagation in the atmosphere through mesopause thermal duct and lower thermosphere density duct, the role of nonlinear viscous effect to limit the amplitude of these waves in the density duct and to allow them to escape to higher altitude where they attain large amplitude in the bottomside F region Ionosphere, and the role of the mean zonal wind to reduce their amplitude are investigated in present study. To study AGW induced disturbances in the equatorial Ionosphere, the AGW model is coupled with hydromagnetic equations in Ionosphere. This coupling is explored in the context of the collisional interchange instability (CII) in the F region leading to the formation of equatorial F region plasma bubbles. To do so, AGW model is coupled with the CII model and simultaneously solved numerically. The possible role of the AGW to act as a seeding perturbation for equatorial plasma bubbles under varying nature of mean zonal wind and tropospheric thermal source are also investigated.

Keywords

Gravity Wave Zonal Wind Thermal Source Lower Thermosphere Altitude Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

EAK wish to acknowledge the supports from FAPESP through the process 07/00104-0.

References

  1. Abdu MA (1999) Coupling and energetics of the equatorial ionosphere-thermosphere system: advances during the STEP period. J Atmos Solar-Terr Phys 61(1–2):153–165CrossRefGoogle Scholar
  2. Abdu MA, Alam Kherani E, Batista IS, de Paula ER, Fritts DC, Sobral JHA (2009) Gravity wave initiation of equatorial spread F/plasma bubble irregularities based on observational data from the SpreadFEx campaign. Ann Geophys 27:2607–2622CrossRefGoogle Scholar
  3. Abdu MA, Batista I, Bittencourt J (1981) Some characteristics of spread F at the magnetic equatorial station Fortaleza. J Geophys Res 86:A8. doi:10.1029/JA086iA08p06836Google Scholar
  4. Abdu MA, Batista IS, Sobral JHA, Jayachandran PT (2003) Equatorial evening prereversal electric field enhancement and sporadic E-layer disruption: a manifestation of E and F-region coupling. J Geophys Res 108(A6):1254CrossRefGoogle Scholar
  5. Abdu MA, Batista IS, Walker GO, Sobral JHA, Trivedi NB, Paula ER (1995) Equatorial ionospheric electric fields during magnetospheric disturbances: local time longitude dependence from recent EITS campaigns. J Atmos Solar-Terr Phys 57(10):1065–1083CrossRefGoogle Scholar
  6. Fejer B, Farley D, Balsley B, Woodman R (1976) Radar observations of twodimensional turbulence in the equatorial electrojet, 2. J Geophys Res 81(1):130–134CrossRefGoogle Scholar
  7. Fejer BG (1991) Low latitude electrodynamic plasma drifts: a review. J Atmos Solar-Terr Phys 53:677CrossRefGoogle Scholar
  8. Fejer BG, Kudeki E, Farley DT (1985) Equatorial F-region zonal plasma drifts. J Geophys Res 90:12249CrossRefGoogle Scholar
  9. Fritts DC, Abdu MA, Batista BR et al (2009) Overview and summary of the spread F experiment (SpreadFEx). Ann Geophys 27:2141–2155CrossRefGoogle Scholar
  10. Fritts DC, Alexander MJ (2003) Gravity dynamics and effects in the middle atmosphere. Rev Geophys 41(1):1003. doi:10.1029/2001RG000106CrossRefGoogle Scholar
  11. Fritts DC, Rastogi P (1985) Convective and dynamical instabilities due to gravity wave motions in the lower and middle atmosphere: theory and observations. Radio Sci 20:6. doi:10.1029/RS020i006p01247CrossRefGoogle Scholar
  12. Fritts DC, Vadas SL (2008) Gravity wave penetration into the thermosphere: sensitivity to solar cycle variations and mean winds. Ann Geophys 26:3841–3861CrossRefGoogle Scholar
  13. Fritts DC et al (1997) Equatorial dynamics observed by rocket, radar, and satellite during the CADRE/MALTED campaign 2. Mean and wave structures, coherence, and variability. J Geophys Res 102(26):191–26216Google Scholar
  14. Forbes JM, Roble RG, Marcos FA (1995) Equatorial penetration of magnetic disturbance effects in the thermosphere and ionosphere. J Atmos Solar-Terr Phys 57:1085–1093CrossRefGoogle Scholar
  15. Haerendel G (1973) Theory of equatorial spread F, report. Maxplanck-Institut fur extraterre. Physics Garching, GermanyGoogle Scholar
  16. Haerendel G, Eccles J, Cakir S (1992) Theory for modeling the equatorial evening ionosphere and the origin of the shear in the Horizontal Plasma Flow. J Geophys Res 97(A2):1209–1223CrossRefGoogle Scholar
  17. Hickey MP, Taylor MJ, Gardner CS, Gibbons CR (1998) Full-wave modeling of small-scale gravity waves using Airborne Lidar and observations of the Hawaiian Airglow (ALOHA-93) O(1S) images and coincident Na wind/temperature lidar Measurements. J Geophys Res 103:6439–6453CrossRefGoogle Scholar
  18. Hines CO (1960) Internal atmospheric gravity waves at ionospheric heights. Can J Phys 38:1441–1481Google Scholar
  19. Hines CO (1967) On the nature of traveling ionospheric disturbances launched by low-altitude nuclear explosions. J Geophys Res 72:1877–1882CrossRefGoogle Scholar
  20. Huang CS, Kelley MC (1996) Nonlinear evolution of equatorial spread F 4: gravity waves, velocity shear and day-to-day variability. J Geophys Res 101:24521CrossRefGoogle Scholar
  21. Huang CS, Kelley MC, Hysell DL (1993) Nonlinear Rayleigh-Taylor instabilities, atmospheric gravity waves, and equatorial spread F. J Geophys Res 98:15631CrossRefGoogle Scholar
  22. Huba JD, Joyce G (2007) Equatorial spread modeling: multiple bifurcated structures, secondary instabilities, large density biteouts, and supersonic flows. Geophys Res Lett 34:L07105. doi:10.1029/2006GL028519CrossRefGoogle Scholar
  23. Huba J, Joyce G, Fedder J (2000) Sami2 is another model of the ionosphere (SAMI2): a new lowlatitude ionosphere model. J Geophys Res 105(A10):23035–23053CrossRefGoogle Scholar
  24. Huba JD, Ossakow SL, Joyce G, Krall J, England SL (2009) Threedimensional equatorial spread modeling: zonal neutral wind effects. Geophys Res Lett 36:L19106. doi:10.1029/2009GL040284CrossRefGoogle Scholar
  25. Hysell DL, Kelley MC, Swartz WE, Woodman RF (1990) Seeding and layering of equatorial spread F by gravity waves. J Geophys Res 95:17253CrossRefGoogle Scholar
  26. Hysell DL, Kudeki E (2004) Collisional shear instability in the equatorial F region ionosphere. J Geophys Res 109:A11301. doi:10.1029/2004JA010636CrossRefGoogle Scholar
  27. Kelley MC, Larsen MF, LaHoz C, Mc Clure JP (1981) Gravity wave initiation of equatorial spread F: a case study. J Geophys Res 86:9087CrossRefGoogle Scholar
  28. Keskinen MJ, Ossakow SL, Fejer BG (2003) Three-dimensional nonlinear evolution of equatorial ionospheric spread-F bubbles. Geophys Res Lett 30(10). doi:1029/2003GL017418Google Scholar
  29. Keskinen MJ, Vadas SL (2009) Threedimensional nonlinear evolution of equatorial ionospheric bubbles with gravity wave seeding and tidal wind effects. Geophys Res Lett 36:L12102. doi:10.1029/2009GL037892CrossRefGoogle Scholar
  30. Kherani EA, Lognonne P, Kamath N, Crespon F, Garcia R (2009a) Response of the ionosphere to the seismic triggered acoustic wave: electron density and electromagnetic fluctuations. Geophys J Int 176:1–13Google Scholar
  31. Kherani EA, Abdu MA, de Paula ER, Fritts DC, Sobral JHA, de Meneses FC Jr (2009b) The impact of gravity waves rising from convection in the lower atmosphere on the generation and nonlinear evolution of equatorial bubble. Ann Geophys 27:1657–1668CrossRefGoogle Scholar
  32. Kherani EA, Mascarenhas M, Sobral JHA, de Paula ER, Bertoni FC (2005) A three dimension simulation model of collisional interchange instability. Space Sci Rev 121:253–269Google Scholar
  33. Kherani EA, de Paula ER, Bertoni FCP (2004) Effects of the fringe field of Rayleigh-Taylor instability in the equatorial E and valley regions. J Geophys Res 109:A12310. doi:10.1029/2003JA010364CrossRefGoogle Scholar
  34. Kherani EA, Lognonne P, Kamath N, Crespon F, Garcia R (2009a) Response of the ionosphere to the seismic triggered acoustic wave: electron density and electromagnetic fluctuations. Geophys J Int 176:1–13Google Scholar
  35. Kherani EA, Mascarenhas M, Sobral JHA, de Paula ER, Bertoni FC (2005) A three dimension simulation model of collisional interchange instability. Space Sci Rev 121: 253–269Google Scholar
  36. Kudeki E, Akgiray A, Milla M, Chau JL, Hysell DL (2007) Equatorial spread-F initiation: post-sunset vortex, thermospheric winds, gravity waves. J Atmos Solar-Terr Phys 69:2416–2427CrossRefGoogle Scholar
  37. Kudeki E, Bhattacharyya S (1999) Post sunset vortex in equatorial F-region plasma drifts and implications for bottom-side spread-F. J Geophys Res 104:28163–28170CrossRefGoogle Scholar
  38. Kudeki E, Fawcett CD (1993) High resolution observations of 150 km echoes at Jicamarca. Geophys Res Lett 20(18):1987–1990CrossRefGoogle Scholar
  39. Kudeki E, Fejer BG, Farley DT, Ierkic HM (1981) Interferometer studies of equatorial F-region irregularities and drifts. Geophys Res Lett 8:377CrossRefGoogle Scholar
  40. Piani C, Durran D, Alexander MJ, Holton JR (2000) A numerical study of three-dimensional gravity waves triggered by deep tropical convection. J Atmos Sci 57:3689–3702CrossRefGoogle Scholar
  41. Pitteway MLV, Hines CO (1965) The reflection and ducting of atmospheric gravity waves. Can J Phys 43:2222–2245Google Scholar
  42. Richmond AD (1978) Gravity wave generation, propagation, and dissipation in the thermosphere. J Geophys Res 83:4131–4145CrossRefGoogle Scholar
  43. Rottger J (1981) Equatorial spread F by electric fields and atmospheric gravity waves generated by thunderstorms. J Atmos Solar-Terr Phys 43:453CrossRefGoogle Scholar
  44. Sao Sabbas FT, Rampinelli VT, Santiago J, Stamus P, Vadas SL, Fritts DC, Taylor MJ, Pautet PD, Dolif Neto G, Pinto O (2009) Characteristics of sprite and gravity wave convective sources present in satellite IR images during the SpreadFEx 2005 in Brazil. Ann Geophys 27:1279–1293CrossRefGoogle Scholar
  45. Snively JB, Pasko VP (2008) Excitation of ducted gravity waves in the lower thermosphere by tropospheric sources. J Geophys Res 113:A06303. doi:10.1029/2007JA012693CrossRefGoogle Scholar
  46. Sobral JHA, Abdu M, Batista I, Zamlutti C (1981) Wave disturbances in the low latitude ionosphere and equatorial ionospheric plasma depletions 1981. J Geophys Res 86:A3. doi:10.1029/JA086iA03p01374CrossRefGoogle Scholar
  47. Sultan P (1996) Linear theory and modelling of the Rayleigh-Taylor instability leading to the occurrence of equatorial spread F. J Geophys Res 101:26875CrossRefGoogle Scholar
  48. Takahashi H et al (2010) Equatorial ionosphere bottomtype spread F observed by OI 630.0 nm airglow imaging. Geophys Res Lett 37:L03102. doi:10.1029/2009GL041802CrossRefGoogle Scholar
  49. Tsunoda RT (1994) Enhanced velocities and a shear in daytime Esq over Kwajalein and their relationship to 150 km echoes over the dip equator. Geophys Res Lett 21:2741CrossRefGoogle Scholar
  50. Vadas SL (2007) Horizontal and vertical propagation, and dissipation of gravity waves in the thermosphere from lower atmospheric and thermospheric sources. J Geophys Res 112:A06305. doi:10.1029/2006JA011845CrossRefGoogle Scholar
  51. Vadas SL, Liu H (2009) Generation of largescale gravity waves and neutral winds in the thermosphere from the dissipation of convectively generated gravity waves. J Geophys Res 114:A10310. doi:10.1029/2009JA014108CrossRefGoogle Scholar
  52. Weinstock J (1982) Nonlinear theory of gravity waves: momentum deposition, generalized Rayleigh friction, and diffusion. J Atmos Sci 39:1698–1710CrossRefGoogle Scholar
  53. Weinstock J (1990) Saturated and unsaturated spectra of gravity waves and scale-dependent diffusion. J Atmos Sci 47:2211–2225CrossRefGoogle Scholar
  54. Woodman R, La Hoz C (1976) Radar observations of F region equatorial irregularities. J Geophys Res 81(31):5447–5466CrossRefGoogle Scholar
  55. Yeh KC, Liu CH (1974) Acoustic-gravity waves in the upper atmosphere. Rev Geophys 1 (2):193–216CrossRefGoogle Scholar
  56. Yu Y, Hickey MP (2007) Numerical modeling of a gravity wave packet ducted by the thermal structure of the atmosphere. J Geophys Res 112:A06308. doi:10.1029/2006JA012092CrossRefGoogle Scholar
  57. Zhang SD, Yi F (2002) A numerical study of propagation characteristics of gravity wave packets propagating in a dissipative atmosphere. J Geophys Res 107. doi:10.1029/2001JD000864Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • E. Alam Kherani
    • 1
    Email author
  • Mangalathayil Ali Abdu
    • 1
  • Dave C. Fritts
    • 2
  • Eurico R. de Paula
    • 3
  1. 1.National Institute for Space ResearchSão Jose dos CamposBrazil
  2. 2.Colorado Research Associates DivisionNorthWest Research AssociatesBoulderUSA
  3. 3.Instituto Nacional de Pesquisas Espaciais (INPE)São Jose dos CamposBrasil

Personalised recommendations