Skip to main content

What We Can Do in Seismoelectromagnetics and Electromagnetic Precursors

  • Chapter
  • First Online:
  • 1356 Accesses

Part of the book series: IAGA Special Sopron Book Series ((IAGA,volume 1))

Abstract

Earthquake (EQ) prediction, in particular short-term prediction, is one of the topmost challenges in modern science. However, the general view of the community is pessimistic. EQ prediction research has been rather heavily biased toward seismology for the last several decades. In addition to seismics, however, the importance of other methods is being recognized. We intend to evaluate the possible role of electromagnetic (EM) approach to this end by introducing examples of precursors needed for short-term prediction. Recent advances in the physics of critical phenomena to be applied to EQ generation mechanism and the possibility of EQ triggering effect of EM pulses will also be mentioned.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aggarwal YL, Sykes J, Armbruster and Sbar M (1973) Premonitary changes in seismic velocities and prediction of earthquakes. Nature 241, 5385:101–104

    Article  Google Scholar 

  • Asada TH, Baba K, Kawazoe M, Sugiura (2001) An attempt to delineate very low frequency electromagnetic signals associated with earthquakes. Earth Planets Space 53:55–62

    Google Scholar 

  • Avagimov AL, Bogomolov T, Cheidze A, Ponomarev G, Sobolev N, Tarasov V, Zeigamik (2004) Induced seismicity by trigger stimulation from laboratory and field tests Proceedings of 1st international workshop on active monitoring in the solid earth geophysics, Mizunami, Japan, pp 56–59

    Google Scholar 

  • Bak P, Tang C (1989) Earthquakes as a self-organized critical phenomenon. J Geophys Res 94:15635–15637

    Article  Google Scholar 

  • Bakun WH, Aagaard B, Dost WL, Ellsworth JL, Hardebeck RA, Harris C, Ji MJS, Johnston J, Langbein JJ, Lienkaemper AJ, Michael JR, Murray RM, Nadeau PA, Reasenberg MS, Reichle EA, Roeloffs A, Shakal RW, Simpson F, Waldhauser (2005) Implications for prediction and hazard assessment from the 2004 Parkfield earthquake. Nature 437:969–974

    Article  Google Scholar 

  • Chouliaras G, Stavrakakis G (1999) Support for VAN’s earthquake predictions is based on false statements. Eos Trans. AGU 80(19): 216

    Article  Google Scholar 

  • Chen Y, Tsoi K, Chen F, Gao Z, Zou Q, Chen Z (1988) The great Tangshan earthquake of 1976, Pergamon, Tarrytown NY

    Google Scholar 

  • Clilverd MA, Rodger CJ, Thomson NR (1999) Investigating seismo-ionospheric effects on a long subionospheric path. J Geophys Res 104, A12:28171–28179

    Article  Google Scholar 

  • Enomoto Y, Hashimoto H (1990) Emission of charged particles from indentation fracture of rocks. Nature 346:641–643

    Article  Google Scholar 

  • Enomoto Y, Hashimoto H, Shirai N, Murakami Y, Mogi T, Takada M, Kasahara M (2006) Anomalous geoelectric signals possibly related to the 2000 Mt Usu eruption and 2003 Tokachi-Oki earthquake. Phys Chem Earth 31:319–324

    Google Scholar 

  • Evernden JF (1982) Earthquake prediction: what we have learned and what we should do now. Bull Seism Soc Am 72:343–349

    Google Scholar 

  • Fitterman DV (1978) Electrokinetic and magnetic anomalies associated with dilatant regions in a layered earth. J Geophys Res 83:5923–5928

    Article  Google Scholar 

  • Fraser-Smith AC, Bernardi A, McGill PR, Ladd ME, Helliwell RA, Villard OG Jr (1990) Low-frequency magnetic field measurements near the epicenter of the Ms 7.1 Loma Prieta earthquake. Geophys Res Let 17:1465–1468

    Article  Google Scholar 

  • Freund (2009) Stress-activated positive hole charge carriers in rocks and the generation of pre-earthquake signals. In: Hayakawa M (ed) Electromagnetic phenomena associated with earthquakes. Research Signpost, India, pp 41–96. ISBN: 978-81-7895-297-0

    Google Scholar 

  • Freund F (2010) Toward a unified solid state theory for pre-earthquake signals, Acta Geophys 58:719–766. doi: 10.2478/s11600-009-0066-x

    Article  Google Scholar 

  • Freund F, Takeuchi A, Lau BES (2006) Electric currents streaming out of stressed igneous rocks – A step towards understanding pre-earthquake low frequency EM emissions. Phys Chem Earth 31:389–396

    Google Scholar 

  • Fujiwara H, Kamogawa M, Ikeda M, Liu JY, Sakata H, Chen YI, Ofuruton H, Muramatsu S, Chuo YJ, Ohtsuki YH (2004) Atmospheric anomalies observed during earthquake occurrences. Geophys Res Let 31:L17110. doi:10.1029/2004GL019865

    Article  Google Scholar 

  • Geller R (ed) (1996) Debate on VAN. Geophys Res Lett 23(Special Issue):11

    Google Scholar 

  • Gokhberg MB, Morgounov VA, Yoshino T, Tomizawa I (1982) Experimental measurement of electromagnetic emissions possibly related to earthquakes in Japan. J Geophys Res 87 B9:7824–7828

    Article  Google Scholar 

  • Hayakawa M, Kawate R, Molchanov OA, Yumoto K (1996) Results of ultra-low frequency magnetic field measurements during Guam earthquake of 8 August 1993. Geophys Res Lett 23:241–244

    Article  Google Scholar 

  • Ikeya M (2004) Earthquakes and animals: from folk legends to science. World Scientific, Singapore. ISBN-13: 978-9812385918

    Google Scholar 

  • Kamogawa M (2006) Preseismic lithosphere-atmosphere-ionosphere coupling. Eos 87:417, 424

    Article  Google Scholar 

  • Kato T (1981) Secular and earthquake-related vertical crustal movements in Japan as deduced from tidal records (1951–1981). Tectonophysics 97:183–200

    Article  Google Scholar 

  • Kopytenko YA, Matishvili TG, Voronov PM, Kopytenko EA, Molchanov OA (1993) Detection of ultra-low-frequency emissions connected with the Spitak earthquake and its aftershock activity, based on geomagnetic pulsation data at Dusheti and Vardzia observatories. Phys Earth Planetary Inter 77:85–95

    Article  Google Scholar 

  • Kushida Y, Kushida R (2002) Possibility of earthquake forecast by radio observations in the VHF band. J Atmos Electricity 22:239–255

    Google Scholar 

  • Li Y, Liu Y, Jiang Z, Guan J, Yi G, Cheng S, Yang B, Fu T Wang Z (2009) Behavioral change related to Wenchuan devastating earthquake in mice. Bioelectromagnetics. doi 10.1002/bem20520

    Google Scholar 

  • Liu JY, Chen YI, Chuo YJ (2006) A statistical investigation of pre-earthquake ionospheric anomaly. J Geophys Res 111:A05304, 10.1029/2005JA011333

    Article  Google Scholar 

  • Main I (1995) Statistical physics, seismogenesis, and seismic hazard. Rev Geophys 34:433–462

    Article  Google Scholar 

  • McEvilly TV, Johnson LR (1974) Stability of P and S velocities from central California quarry blasts. Bull Seismol Soc Am 64:342–353

    Google Scholar 

  • Mizutani H, Ishido T, Yokokura, T, Ohnishi S (1976) Electrokinetic phenomena associated with earthquakes. Geophys Res Lett 3:365–368

    Article  Google Scholar 

  • Molchanov OA, Hayakawa M (1998) Subionospheric VLF signal perturbations possibly related to earthquakes. J Geophys Res 100:1691–1712

    Article  Google Scholar 

  • Moriya T, Mogi T, Takada M (2010) Anomalous pre-seismic transmission of VHF-band radio waves resulting from large earthquakes, and its statistical relationship to magnitude of impending earthquakes. Geophys J Int 180(2):858–870

    Article  Google Scholar 

  • Němec F, Santolík O, Parrot M (2009) Decrease of intensity of ELF/VLF waves observed in the upper ionosphere close to earthquakes: a statistical study. J Geophys Res 114:A04303. doi:10.1029/2008JA013972

    Article  Google Scholar 

  • Papadopoulos GA (2010) Comment on “The prediction of two large earthquakes in Greece”. Eos Trans AGU 91(18):162

    Article  Google Scholar 

  • Press F (1975) Earthquake prediction. Sci Am 232(5):14–23

    Article  Google Scholar 

  • Pulinets S, Boyarchuk K (2005) Ionospheric precursors of earthquakes. Springer, New York, NY, p 316

    Google Scholar 

  • Raleigh B, Benett D, Craig H, Hanks T, Molnar P, Nur A, Savage J, Scholz C, Turner R, Wu F (1977) Prediction of Haisheng earthquake. EOS 58(5):2

    Google Scholar 

  • Roeloffs E (1994) The earthquake prediction experiment at Parkfield, California. Rev Geophys 32(3):315–336

    Article  Google Scholar 

  • Sadovsky M, Nersesov I, Nigumatullaev S, Latynina L, Lukk A, Semenov A, Simbireva I, Ulmov V (1972) The processes preceding strong earthquakes in some regions of Middle Asia. Tectonophys 14:295–307

    Article  Google Scholar 

  • Sarlis NV, Skordas ES, Lazaridou MS, Varotsos PA (2008) Investigation of seismicity after the initiation of a Seismic Electric Signal activity until the main shock. Proc Jpn Acad Ser B 84:331–343

    Article  Google Scholar 

  • Semyenov AN (1969) Variation in the travel time of traverse and longitudinal waves before violent earthquakes. Izv Acad Sci USSR (Phys Solid Earth) 4:245–248 (English transl)

    Google Scholar 

  • Sholtz C, Sykes LR, Aggarwal YP (1973) Earthquake prediction: a physical basis. Science 181:803–810

    Article  Google Scholar 

  • Tarasov NT, Tarasova NV, Avagimov AA, Zeigarnik VA (2001) The effect of electromagnetic implication on seismicity in the Bishkek geodynamic test ground. Russ Geol Geophys 42:1558–1566

    Google Scholar 

  • Thomas JN, Love JJ, Johnston MJS, Yumoto K (2009) On the reported magnetic precursor of the 1993 Guam earthquake. Geophys Res Lett 36:L16301. doi:10.1029/2009GL039020

    Article  Google Scholar 

  • Tributsch H (1982) When the snakes awake: animals and earthquake prediction, MIT Press, Cambridge, MA

    Google Scholar 

  • Tsutsui M (2002) Detection of earth-origin electric pulses. Geophys Res Lett 29:1194. doi:10.1029/2001GL013713

    Article  Google Scholar 

  • Tsutsui M (2005) Identification of earthquake epicentre from measurements of electromagnetic pulses in the earth. Geophys Res Lett 32:L20303. doi:10.1029/2005GL023691

    Article  Google Scholar 

  • Uyeda S (2000) In defense of VAN’s earthquake predictions. Eos Trans AGU 81(1):3

    Article  Google Scholar 

  • Uyeda S, Hayakawa M, Nagao T, Molchanov O, Hattori K, Orihara Y, Gotoh K, Akinaga Y, Tanaka H (2002) Electric and magnetic phenomena observed before the volcano-seismic activity in 2000 in the Izu Island Region. Japan, Proc Natl Acad Sci USA 99:7352–7355

    Article  Google Scholar 

  • Uyeda S, Kamogawa M (2008) The prediction of two large earthquakes in Greece. Eos Trans AGU 89:39. doi:10.1029/2008EO390002

    Article  Google Scholar 

  • Uyeda S, Kamogawa M (2010) Reply to comment on “The prediction of two large earthquakes in Greece”. Eos Trans AGU Eos Trans AGU 91(18)

    Google Scholar 

  • Uyeda S, Meguro K (2004) Earthquake prediction, seismic hazard and vulnerability. In: Forecasting, prediction, and risk assessment. IUGG monograph, vol 19. pp 349–358

    Google Scholar 

  • Uyeda S, Nagao T, Orihara Y, Yamaguchi Y, Takahashi I (2000) Geoelectric potential changes: possible precursors to earthquakes in Japan. Proc Natl Acad Sci USA 97:4561–4566

    Article  Google Scholar 

  • Varotsos PA (2005) The physics of seismic electric signals. TerraPub Tokyo, Japan, p 358

    Google Scholar 

  • Varotsos P, Alexopoulos K (1984a) Physical properties of the variations of the electric field of the earth preceding earthquakes I. Tectonophysics 110:73–98

    Article  Google Scholar 

  • Varotsos P, Alexopoulos K (1984b) Physical properties of the variations of the electric field of the earth preceding earthquakes II. Tectonophysics 110:99–125

    Article  Google Scholar 

  • Varotsos P, Alexopoulos K (1986) Stimulated current emission in the earth and related geophysical aspects. In: Amelinckx S, Gevers R, Nihoul J (eds) Thermodynamics of point defects and their relation with bulk properties. North Holland, Amsterdam

    Google Scholar 

  • Varotsos P, Sarlis N, Skordas E (2002) Long range correlations in the electric signals that precede rupture. Phys Rev E 66(7):011902

    Article  Google Scholar 

  • Warwick JW, Stoker C, Meyer TR (1982) Radio emission associated with rock fracture: possible application to the great Chilean earthquake of May 22, 1960 J Geophys Res 87:2851–2859

    Article  Google Scholar 

  • Yamada IK, Masuda, Mizutani H (1989) Electromagnetic and acoustic emission associated with rock fracture. Phys Earth Planetary Inter 57:157–168

    Article  Google Scholar 

  • Yasuoka Y, Kawada Y, Nagahama H, Omori Y, Ishikawa T, Tokonami S, Shinogi M (2009) Preseismic changes in atmospheric radon concentration and crustal strain. Phys Chem Earth 34:431–434

    Google Scholar 

  • Yoshida S, Uyeshima, M, Nakatani M (1997) Electric potential changes associated with slip failure of granite: preseismic and coseismic signals. J Geophys Res 102:14883–14897

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiyasu Nagao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Nagao, T., Uyeda, S., Kamogawa, M. (2011). What We Can Do in Seismoelectromagnetics and Electromagnetic Precursors. In: Petrovský, E., Ivers, D., Harinarayana, T., Herrero-Bervera, E. (eds) The Earth's Magnetic Interior. IAGA Special Sopron Book Series, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0323-0_6

Download citation

Publish with us

Policies and ethics