Skip to main content

Anorthosites as Sources of Magnetic Anomalies

  • Chapter
  • First Online:
The Earth's Magnetic Interior

Part of the book series: IAGA Special Sopron Book Series ((IAGA,volume 1))

Abstract

Magnetic anomalies provide information about location, size and composition of earth structures, ore bodies and tectonic features even in bodies containing only a few percent magnetic minerals. Here we investigate the magnetic properties and oxide mineralogy of anorthosites, rocks rich in plagioclase (>90%), and compare their magnetic signatures to aeromagnetic anomaly maps of the regions. Two of the anorthosite complexes have large negative anomalies associated with them; both have low susceptibility and high remanence related to hemo-ilmenite mineralogy and remanent directions antiparallel to the present field. One complex has appreciable natural remanent magnetization quasi-parallel to the present field, and strong susceptibility, creating an enhanced positive anomaly. The fourth anorthosite has little or no magnetic anomaly over much of its area, in accordance with the weak remanence, low susceptibility and variable magnetic mineralogy observed. The anorthosite samples producing significant anomalies, and maintaining strong and stable natural remanent magnetization over geologic time all contain oxides of the hematite-ilmenite series. This study adds support to ‘lamellar magnetization’ whereby exsolved phases in the ilmenite-hematite system produce strong and stable magnetization with only minor amounts of oxide material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ashwal LD (1993) Anorthosites. Springer, Berlin

    Google Scholar 

  • Bergh SG, Eig K, Kløvjan OS et al (2007) The Lofoten-VesterÃ¥lan continental margin: a multiphase Mesozoic-Paleogene rifted shelf as shown by offshore-onshore brittle fracture analysis. Norw J Geol 87:29–58

    Google Scholar 

  • Blewett DT, Hawke BR, Lucey PG (2002) Lunar pure anorthosite as a spectral analog for Mercury. Meteor Planet Sci 37:1245–1254

    Article  Google Scholar 

  • Bohlen SR, Valley JW, Essene EJ (1985) Metamorphism in the Adirondacks I: Petrology, pressure, and temperature. J Petrol 26:971–992

    Google Scholar 

  • Brown LL, McEnroe SA (2004) Paleomagnetism of the Egersund-Ogna anorthosite, Rogaland, Norway, and the position of Fennoscandia in the Late Proterozoic. Geophys J Int 158:479–488

    Article  Google Scholar 

  • Brown LL McEnroe SA (2008) Magnetic properties of anorthosites: a forgotten source for planetary magnetic anomalies? Geophys Res Lett. doi:10.1029/2007GL032522

    Google Scholar 

  • Buddington AF (1939) Adirondack igneous rocks and their metamorphism. Geol Soc Am Mem 7:1–354

    Google Scholar 

  • Corfu F (2004) U-Pb age, setting, and tectonic significance of the Anorthosite-Mangerite-Charnockite-Granite suite, Lofoten-VesterÃ¥len, Norway. J Petrol 45:1799–1819

    Article  Google Scholar 

  • Davis BTC (1971) Bedrock geology of the St. Regis Quadrangle, New York, NY State Mus Map Chart 16

    Google Scholar 

  • Doig R (1991) U-Pb zircon dates of Morin anorthosite suite rocks, Grenville Province Quebec. J Geol 99:729–738

    Article  Google Scholar 

  • Duchesne JC, Maquil R (1987) The Egersund-Ogna massif. In: Maijer C, Padget P (eds) The geology of southernmost Norway – an excursion guide. Special publication, vol 1. Norwegian Geological Survey, Trondheim, Norway, pp 50–56

    Google Scholar 

  • Duchesne JC, Schiellerup H (2001) The iron-titanium deposits. In: Duchesne JC (ed) The Rogaland Intrusive Massif. Special publication, vol 29. Norwegian Geological Survey, Trondheim, Norway, pp 56–75

    Google Scholar 

  • Emslie RF (1975) Major rock units of the Morin Complex, southwestern Quebec. Geol Surv Can Paper 74–48:1–37

    Google Scholar 

  • Fabian K, McEnroe SA, Robinson P et al (2008) Exchange bias identifies lamellar magnetism as the origin of the natural remanent magnetization in ilmeno-hematite from Modum, Norway. Earth Planetary Sci Lett. doi: 10.1016/j.epsl.2008.01.034

    Google Scholar 

  • Gellein J (2007) Aeromagnetic anomaly map, Svolvær. Scale 1:250,000. Nor Geol Surv, Trondheim, Norway

    Google Scholar 

  • Griffin WL, Taylor PN, Hakkinen JW et al (1978) Archean and Proterozoic crustal evolution in Lofoten-VesterÃ¥len, N Norway. J Geol Soc London 135:629–647

    Article  Google Scholar 

  • Hawke BR, Peterson CA, Blewett DT et al (2003) Distribution and modes of occurrence of lunar anorthosite. J Geophys Res. doi: 10.1029/2002JE001890

    Google Scholar 

  • Heumann MJ, Bickford M, Hill BM et al (2006) Timing of anatexis in metapelites from the Adirondack lowlands and southern highlands: a manifestation of the Shawinigan orogeny and subsequent anorthosite-mangerite-charnockite-granite magmatism. Geol Soc Am Bull 118:1283–1298

    Article  Google Scholar 

  • Irving E, Park JK, Emslie RF (1974) Paleomagnetism of the Morin Complex. J Geophys Res 79:5482–5490

    Article  Google Scholar 

  • Longhi J (2005) A mantle or mafic crustal source for Proterozoic anorthosites? Lithos 83:183–198

    Article  Google Scholar 

  • Ludden J, Hynes A (2000) The Lithoprobe Abitibi-Grenville transect: two billion years of crust formation and recycling in the Precambrian Shield of Canada. Can J Earth Sci 37:459–476

    Article  Google Scholar 

  • Marker M, Schiellerup H, Meyer G et al (2003a) Introduction to the geological map of the Rogaland Anorthosite Province 1:75 000. In: Duchesne JC, Korneliussen A (eds) Ilmenite deposits and their geological environment. Special publication, vol 9. Norwegian Geological Survey, Trondheim, Norway, pp 109–116

    Google Scholar 

  • Marker M, Schiellerup H, Meyer G et al (2003b) Geologic map of the Rogaland Anorthosite Province, 1:75,000. Special publication, vol 9. Norwegian Geological Survey, Trondheim, Norway

    Google Scholar 

  • Markl G, Frost BR, Bucher K (1998) The origin of anorthosites and related rocks from the Lofoten Islands, northern Norway: I. Field relations and estimation of intrinsic variables. J Petrol 39:1425–1452

    Article  Google Scholar 

  • Martignole J, Schrijver, K (1970) Tectonic setting and evolution of the Morin anorthosite, Grenville Province, Quebec. Geol Soc Finl Bull 42:165–209

    Google Scholar 

  • McCammon C, McEnroe SA, Robinson P et al (2009) Mössbauer spectroscopy used to quantify natural lamellar remanent magnetization in single-grains of ilmeno-hematite. Earth Planetary Sci Lett 288:268–278

    Article  Google Scholar 

  • McEnroe SA, Brown LL, Robinson P (2004a) Earth analog for Martian magnetic anomalies: Remanence properties of hemo-ilmenite norites in the Bjerkreim-Sokndal Intrusion, Rogaland, Norway. J Appl Geophys 56:195–212

    Google Scholar 

  • McEnroe SA, Brown LL, Robinson P (2008) Remanent and induced magnetic anomalies over a layered intrusion: Effects from crystal fractionation and recharge events. Tectonophysics. doi:10.1016/j.tecto.2008.11.021

    Google Scholar 

  • McEnroe SA, Fabian K, Robinson P et al (2009) Crustal magnetism, lamellar magnetism and rocks that remember. Elements. doi:10.2113/gselements.5.4.241

    Google Scholar 

  • McEnroe SA, Harrison RJ, Robinson P et al (2002) Nanoscale hematite-ilmenite lamellae in massive ilmenite rock: an example of ‘lamellar magnetism’ with implications for planetary magnetic anomalies. Geophys J Int 151:890–912.

    Article  Google Scholar 

  • McEnroe SA, Robinson P, Panish P (1996) Rock magnetic properties, oxide mineralogy, and mineral chemistry in relation to aeromagnetic interpretation and search for ilmenite reserves. Norw Geol Surv Rep 96–060

    Google Scholar 

  • McEnroe SA, Robinson P, Panish P (2001) Aeromagnetic anomalies, magnetic petrology and rock magnetism of hemo-ilmenite- and magnetite-rich cumulates from the Sokndal Region, South Rogaland, Norway. Am Mineral s86:1447–1468

    Google Scholar 

  • McEnroe SA, Skilbrei JR, Robinson P et al (2004b) Magnetic anomalies, layered intrusions and Mars. Geophys Res Lett. doi: 10.1029/2004GL020640

    Google Scholar 

  • McLelland JM, Bickford ME, Hill BM et al (2004) Direct dating of Adirondack Massif anorthosite by U-Pb SHRIMP analysis of igneous zircon; implications for AMCG complexes. Geol Soc Am Bull 116:1299–1317

    Article  Google Scholar 

  • Michot J, Michot P (1969) The problem of anorthosites: the South-Rogaland Igneous Complex, Southwestern Norway. In: Isachsen YW (ed) The origin of anorthosite and related rocks. NY State Mus Sci Ser Mem 18:399–410

    Google Scholar 

  • Olesen O, Lundin E, Nordgulen Ø et al (2002) Bridging the gap between the onshore and offshore geology in Nordland, northern Norway. Norw J Geol 82:243–262

    Google Scholar 

  • Olesen O, Smethurst MA, Torsvik T, Bidstrup T (2004) Sveconorwegian igneous complexes beneath the Norwegian-Danish Basin. Tectonophysics 387:105–130.

    Article  Google Scholar 

  • Papike JJ, Ryder G, Shearer CK (1998) Lunar samples. In: Papike JJ (ed) Planetary materials. Rev Mineral 36:5-1–5-234

    Google Scholar 

  • Peck WH, DeAngelis MT, Meredith MT et al (2005) Polymetamorphism of marbles in the Morin terrane (Grenville Province, Quebec). Can J Earth Sci 42:1949–1965

    Article  Google Scholar 

  • Peck WH, Valley JW (2000) Large crustal input to high δ18O anorthosite massifs of the southern Grenville Province: new evidence from the Morin Complex, Quebec. Contrib Mineral Petrol 139:402–417

    Article  Google Scholar 

  • Robinson P, Harrison JR, McEnroe SA et al (2002) Lamellar magnetism in the hematite-ilmenite series as an explanation for strong remanent magnetization. Nature 418:517–520

    Article  Google Scholar 

  • Robinson P, Harrison JR, McEnroe SA et al (2004) Nature and origin of lamellar magnetism in the hematite-ilmenite series. Am Mineral 89:725–747

    Google Scholar 

  • Romey WD (1971) Basic igneous complex, mangerite, and high-grade gneisses of Flakstadøy, Lofoten, northern Norway: I. Field relations and speculations on origin. Norw Geol Tidsskrift 51:33–61

    Google Scholar 

  • Schärer U, Wilmart E, Duchesne J (1996), The short duration and anorogenic character of anorthosite magmatism: U-Pb dating of the Rogaland complex, Norway. Earth Planetary Sci Lett 139:335–350

    Article  Google Scholar 

  • Schiellerup H, Korneliussen A, Heldal T et al (2003) Mineral resources in the Rogaland Anorthosite Province, South Norway: origins, history and recent developments. In: Duchesne JC, Korneliussen A (eds) Ilmenite deposits and their geological environment. Norw Geol Surv Spec Publ 9:116–134

    Google Scholar 

  • Takeda H, Yamaguchi A, Bogard DD et al (2006) Magnesian anorthosites and a deep crustal rock from the farside crust of the Moon. Earth Planetary Sci Lett 247:171–184

    Article  Google Scholar 

  • United States Geological Survey (2001) Adirondack Mountains North, New York, Digital flight-line aeromagnetic data set. US Geol Surv Open File Rep 02–0361

    Google Scholar 

  • Valley JW, O’Neil JR (1982) Oxygen isotope evidence for shallow intrusion of Adirondack anorthosite. Nature 300:497–500

    Article  Google Scholar 

  • Zeino-Mahmalat R, Krause H (1976) Plagioklase im anorthosit-komplex von Ã…na-Sira, SW-Norwegen. Petrologische und chemische untersuchungen. Norw Geol Tidsskrift 56:51–94.

    Google Scholar 

  • Zhao X, Ji S, Martignole J (1997) Quartz microstructures and c-axis preferred orientations in high-grade gneisses and mylonites around the Morin anorthosite (Grenville Province). Can J Earth Sci 34:819–832

    Article  Google Scholar 

Download references

Acknowledgements

Parts of this research have been funded by NSF (USA), NFR (Norway) and NGU. Thanks to Peter Robinson for field assistance, Chris Koteas and Weining Zhu for GIS assistance, John Valley for support of past petrologic studies of the Morin Complex, and to Institute for Rock Magnetism, University of Minnesota, supported by a NSF instrument and facility grant, for use of their instruments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurie L. Brown .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Brown, L.L., McEnroe, S.A., Peck, W.H., Nilsson, L.P. (2011). Anorthosites as Sources of Magnetic Anomalies. In: Petrovský, E., Ivers, D., Harinarayana, T., Herrero-Bervera, E. (eds) The Earth's Magnetic Interior. IAGA Special Sopron Book Series, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0323-0_23

Download citation

Publish with us

Policies and ethics