Skip to main content

New Phenomenological Model for Solid Foams

  • Chapter
  • First Online:
Computational Modelling and Advanced Simulations

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 24))

Abstract

New phenomenological material model for solid foam materials is presented. This model describes the uniaxial compressive stress-strain curves of foam materials. Parameters of this model specifically control the shape of compressive stress-strain curve and they are function of foam density. Specimens of polyurethane (PUR) foam with different densities were compressed and their stress-strain curves were fitted by model. Functions of model parameters were used for predict the compressive stress-strain curve of other density foam specimen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gibson, L.J., Ashby, M.F.: Cellular Solids: Structure and Properties, 2nd edn. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  2. Han, F., Zhu, Z., Gao, J.: Compressive deformation and energy absorbing characteristic of foamd aluminum. Metallurgical Mater. Trans. A 29A, 2497 (1998)

    Article  Google Scholar 

  3. Avalle, M., Belingardi, G., Montanini, R.: Characterization of polymeric structural foams under compressive impact loading by means of energy-absorption diagram. Int. J. Impact Eng. 25, 455–472 (2001)

    Article  Google Scholar 

  4. Ashby, M.F.: The mechnical properties of cellular solids. Metall. Trans. A 14A, 1755–1769 (1983)

    Google Scholar 

  5. Avalle, M., Belingardi, G., Ibba, A.: Mechanical models of cellular solids: parameters identification from experimental tests. Int. J. Impact Eng. 34, 3–27 (2007)

    Article  Google Scholar 

  6. Gibson, L.J., Ashby, M.F.: Cellular Solids: Structure and Properties. Pergamon Press, Oxford (1988)

    MATH  Google Scholar 

  7. Goods, S.H., Neuschwanger, C.L., Henderson, C.C., Skala, D.M.: Mechanical properties of CRETE, a poluyrethane foam. J. Appl. Polym. Sci. 68, 1045–1055 (1998)

    Article  Google Scholar 

  8. Roberts, A.P., Garboczi, E.J.: Elastic properties of model random three-dimensional open-cell solids. J. Mech. Phys. Solid 50, 33–55 (2002)

    Article  MATH  Google Scholar 

  9. Gibson, L.J., Ashby, M.F.: The mechanics of three-dimensional cellular materials. Proc. R. Soc. London A382, 43 (1982)

    Google Scholar 

  10. Ashby, M.F., Evans, A., Fleck, N.A., Gibson, L.J., Hutchinson, J.W., Wadley, H.N.G.: Metal Foams – A Design Guide. Butterworth-Heinemann, Oxford (2000)

    Google Scholar 

  11. Chan, K.C., Xie, L.S.: Dependecy of densifications on cell topology of metal foams. Scripta Mater. 48, 1147–1152 (2003)

    Article  Google Scholar 

  12. Kádar, Cs., Kenesei, P., Ledvai, J., Rajkovits, Zs.: Energy absorption properties of metal foams. Mater. World 6(1). ISSN: 1586-0140 (2005)

    Google Scholar 

  13. Thompson-Colon, J.A., Huber, M., Liddle, J.W.: SAE Paper No. 910404 (1991)

    Google Scholar 

  14. Monk, M.W., Sullivan, L.K..: SAE Paper No. 861887 (1986)

    Google Scholar 

  15. McCullough, D.W., Pakulsky, R.R., Liddle, J.W.: SAE Paper No. 920336 (1992)

    Google Scholar 

  16. Rossio, R.O., Vecchio, M.T., Abramczyk, J.E.: SAE Paper No. 930433 (1993)

    Google Scholar 

  17. Liu, Q., Subhash, G.: A phenomenological constitutive model for foams under large deformations. Polym. Eng Sci. 44, 463–473 (2004)

    Article  Google Scholar 

  18. Rusch, K.C.: Load-compression behavior of flexible foams. J. Appl. Polym. Sci. 13, 2297 (1969)

    Article  Google Scholar 

  19. Meinecke, E.A., Schwaber, D.M.: Energy absorption in polymeric foams. J. Appl. Polym. Sci. 14, 2239 (1970)

    Article  Google Scholar 

  20. Nagy, A., Ko, W.L., Lindholm, U.S.: Mechanical behavior of foamed materials under dynamic compression. J. Cell. Plastics 10, 127 (1974)

    Article  Google Scholar 

  21. Sherwood, J.A., Frost, C.C.: Constitutive modeling and simulation of energy absorbing polyurethane foam under impact loading. Polym. Eng Sci. 32, 1138 (1992)

    Article  Google Scholar 

  22. Chou, C.C., Zhao, Y., Chai, L., Co, J., Lim, G.G.: SAE Paper No. 952733 (1996)

    Google Scholar 

  23. Faruque, O., Liu, N., Chou, C.C.: SAE Paper No. 971076 (1997)

    Google Scholar 

  24. Zhang, J., Kikuchi, N., Li, V., Yee, A., Nuscholtz, G.: Constitutive modeling of polymeric foam material subjected to dynamic crash loading. Int. J. Impact Eng. 21, 369 (1998)

    Article  Google Scholar 

  25. Roff, W.F., Scott, J.R.: Fibres, Films, Plastics and Rubbers – A Handbook of Common Polymers. Butterworths, London (1971)

    Google Scholar 

Download references

Acknowledgements

This article has been accomplished under VEGA grant no. 1/4122/07.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Goga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Goga, V. (2011). New Phenomenological Model for Solid Foams. In: Murín, J., Kompiš, V., Kutiš, V. (eds) Computational Modelling and Advanced Simulations. Computational Methods in Applied Sciences, vol 24. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0317-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-0317-9_4

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-0316-2

  • Online ISBN: 978-94-007-0317-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics