Skip to main content

Application of General Boundary Element Method for Numerical Solution of Bioheat Transfer Equation

  • Chapter
  • First Online:
Computational Modelling and Advanced Simulations

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 24))

  • 1297 Accesses

Abstract

The heat transfer processes proceeding in domain of living tissue are discussed. The typical model of bioheat transfer bases, as a rule, on the well known Pennes equation (heat diffusion equation with additional terms corresponding to the perfusion and metabolic heat sources). Here, the other approach basing on the dual-phase-lag equation (DPLE) is considered. This equation is supplemented by the adequate boundary and initial conditions. To solve the problem the general boundary element method is adapted. The examples of computations for 2D problem are presented in the final part of the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jaunich, M., Raje, S., Kim, K., Mitra, K., Guo, Z.: Bio-heat transfer analysis during short pulse laser irradiation of tissue. Int. J. Heat Mass Transf. 51, 5511–5521 (2008)

    Article  MATH  Google Scholar 

  2. Zhang, L., Dai, W., Nassar, R.: A numerical method for optimizing laser power in the irradiation of a 3-D triple-layered cylindrical skin structure. Numer. Heat Transf A 48, 21–41 (2005)

    Article  Google Scholar 

  3. Zhou, J., Zhang, Y., Chen, J.K.: A dual reciprocity boundary element method for photothermal interactions in laser-induced thermotherapy. Int. J. Heat Mass Transf. 51, 3869–3881 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Zhou, J., Chen, J.K., Zhang, Y.: Dual-phase lag effects on thermal damage to biological tissues caused by laser irradiation. Comput. Biol. Med. 39, 286–293 (2009)

    Article  Google Scholar 

  5. Comini, G., Del Giudice, L.: Thermal aspects of cryosurgery. J. Heat Transf. 98, 543–549 (1976)

    Article  Google Scholar 

  6. Majchrzak, E., Dziewonski, M.: Numerical simulation of freezing process using the BEM. Comput. Assist. Mech. Eng. Sci. 7, 667–676 (2000)

    MATH  Google Scholar 

  7. Majchrzak, E., Dziewonski, M.: Numerical Analysis of Biological Tissue Freezing Process, pp. 189–200. Kluwer, Dordrecht (2001)

    Google Scholar 

  8. Mochnacki, B., Dziewonski, M.: Numerical analysis of cyclic freezing. Acta Bioeng. Biomech. 6(1), 476–479 (2004)

    Google Scholar 

  9. Lv, Y.G., Deng, Z.S., Liu, J.: 3D numerical study on the induced heating effects of embedded micro/nanoparticles on human body subject to external medical electromagnetic field. IEEE Trans. Nanobiosci. 4(4), 284–294 (2005).

    Article  Google Scholar 

  10. Majchrzak, E., Dziatkiewicz, G., Paruch, M.: The modelling of heating a tissue subjected to external electromagnetic field. Acta of Bioeng. Biomech. 10(2), 29–37 (2008)

    Google Scholar 

  11. Wang, H., Dai, W., Bejan, A.: Optimal temperature distribution in 3D triple-layered skin structure embedded with artery and vein vasculature and induced by electromagnetic radiation. Int. J. Heat Mass Transf. 50, 1843–1854 (2007)

    Article  MATH  Google Scholar 

  12. Pennes, H.H.: Analysis of tissue and arterial blood temperatures in the resting human forearm. J. Appl. Physiol. 1, 93–122 (1948)

    Google Scholar 

  13. Majchrzak, E., Jasinski, M.: Numerical estimation of burn degree of skin tissue using the sensitivity analysis methods. Acta Bioeng. Biomech. 5(1), 93–108 (2003)

    Google Scholar 

  14. Majchrzak, E., Jasinski, M.: Sensitivity analysis of burns integrals. Comput. Assist. Mech. Eng. Sci. 11(2/3) 125–136 (2004)

    MATH  Google Scholar 

  15. Mochnacki, B., Majchrzak, E.L.: Sensitivity of the skin tissue on the activity of external heat sources. Comput. Model. Eng. Sci. 4(3/4), 431–438 (2003)

    Google Scholar 

  16. Torvi, D.A., Dale, J.D.: A finite element model of skin subjected to a flash fire. J. Biomech. Eng. 116, 250–255 (1994)

    Article  Google Scholar 

  17. Erhart, K., Divo, E., Kassab, A.: An evolutionary-based inverse approach for the identification of non-linear heat generation rates in living tissues using localized meshless method. Int. J. Numer. Methods Heat Fluid Flow 18(3), 401–414 (2008)

    Article  Google Scholar 

  18. Majchrzak, E., Jasinski, M., Janisz, D.: Identification of thermal parameters of biological tissue. Acta Bioeng. Biomech. 6(1), 467–470 (2004)

    Google Scholar 

  19. Majchrzak, E., Mochnacki, B.: Sensitivity analysis and inverse problems in bio-heat transfer modelling. Comput. Assist. Mech. Eng Sci. 13, 85–108 (2006)

    Google Scholar 

  20. Paruch, M., Majchrzak, E.: Identification of tumor region parameters using evolutionary algorithm and multiple reciprocity boundary element method. Eng. Appl. Artif. Intell. 20: 647–655 (2007)

    Article  Google Scholar 

  21. Cattaneo, C.: A form of heat conduction equation which eliminates the paradox of instantaneous propagation. Comp. Rend. 247, 431–433 (1958)

    MathSciNet  Google Scholar 

  22. Vernotte, P.: Les paradoxes de la theorie continue de l’equation de la chaleur. Comp. Rend. 246, 3154–3155 (1958)

    MathSciNet  Google Scholar 

  23. Kaminski, W.: Hyperbolic heat conduction equation for materials with a nonhomogeneous inner structure. J. Heat Transf. 112, 555–560 (1990)

    Article  Google Scholar 

  24. Özişik, M.N., Tzou, D.Y.: On the wave theory in heat conduction. J. Heat Transf. 116, 526–535 (1994)

    Article  Google Scholar 

  25. Tamma, K.K., Zhou, X.: Macroscale and microscale thermal transport and thermo-mechanical interactions: some noteworthy perspectives. J. Therm. Stresses 21, 405–449 (1998)

    Article  Google Scholar 

  26. Xu, F., Seffen, K.A., Lu, T.J.: Non-Fourier analysis of skin biothermomechanics. Int. J. Heat Mass Transf. 51, 2237–2259 (2008)

    Article  MATH  Google Scholar 

  27. Liao, S.: General boundary element method for non-linear heat transfer problems governed by hyperbolic hear conduction equation. Comput. Mech. 20, 397–406 (1997)

    Article  MATH  Google Scholar 

  28. Liao, S.: Boundary element method for general nonlinear differential operators. Eng. Anal. Bound. Elem. 20(2), 91–99 (1997)

    Article  Google Scholar 

  29. Liao, S.: A direct boundary element approach for unsteady non-linear heat transfer problems. Eng. Anal. Bound.ry Elem. 26, 55–59 (2002)

    Article  MATH  Google Scholar 

  30. Brebbia, C.A., Telles, J.C.F., Wrobel, L.C.: Boundary Element Techniques. Springer, Berlin, New York (1984)

    MATH  Google Scholar 

  31. Majchrzak, E.: Boundary Element Method in Heat Transfer. Publication of Czestochowa University of Technology, Czestochowa (in Polish) (2001)

    Google Scholar 

  32. Majchrzak, E.: Numerical modelling of bio-heat transfer using the boundary element method. J. Theor. Appl. Mech. 2(36), 437–455 (1998)

    Google Scholar 

  33. Partridge, P.W., Brebbia, C.A., Wrobel, L.C.: The Dual Reciprocity Boundary Element Method. Computational Mechanics Publications, London, New York (1992)

    MATH  Google Scholar 

  34. Liu, J., Xu, L.X.: Boundary information based diagnostics on the thermal states of biological bodies. J. Heat Mass Transf. 43, 2827–2839 (2000)

    Article  MATH  Google Scholar 

  35. Lu, W.Q., Liu, J., Zeng, Y.: Simulation of thermal wave propagation in biological tissues by the dual reciprocity boundary element method. Eng. Anal. Bound. Elem. 22, 167–174 (1998)

    Article  MATH  Google Scholar 

  36. Liao, S., Chwang, A.: General boundary element method for unsteady nonlinear heat transfer problems. Numer. Heat Transf. B 35, 225–242 (1999)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Grant No N N501 3667 34 sponsored by the Polish Ministry of Science and Higher Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Majchrzak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Majchrzak, E. (2011). Application of General Boundary Element Method for Numerical Solution of Bioheat Transfer Equation. In: Murín, J., Kompiš, V., Kutiš, V. (eds) Computational Modelling and Advanced Simulations. Computational Methods in Applied Sciences, vol 24. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0317-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-0317-9_18

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-0316-2

  • Online ISBN: 978-94-007-0317-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics