Skip to main content

On Drilling Degrees of Freedom

  • Chapter
  • First Online:
Computational Modelling and Advanced Simulations

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 24))

Abstract

In this paper the development of a new quadrilateral membrane finite element with drilling degrees of freedom is discussed. A variational principle employing an independent rotation field around the normal of a plane continuum element is derived. This potential is based on the Cosserat continuum theory where skew symmetric stress and strain tensors are introduced in connection with the rotation of a point. From this higher continuum theory a formulation that incorporates rotational degrees of freedom is extracted, while the stress tensor is symmetric in a weak form. The resulting potential is found to be similar to that obtained by the procedure of Hughes and Brezzi. However, Hughes and Brezzi derived their potential in terms of pure mathematical investigations of Reissner’s potential, while the present procedure is based on physical considerations. This framework can be enhanced in terms of assumed stress and strain interpolations, if the numerical model is based on a modified Hu-Washizu functional with symmetric and asymmetric terms. The resulting variational statement enables the development of a new finite element that is very efficient since all parts of the stiffness matrix can be obtained analytically even in terms of arbitrary element distortions. Without the addition of any internal degrees of freedom the element shows excellent performance in bending dominated problems for rectangular element configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    One spurious mode is elastically restrained for non rectangular element shapes.

  2. 2.

    Invariant with respect to rotations.

  3. 3.

    This represents the key step of our procedure. We are not involved with a continuum theory where boundary moments are acting since we focus on classical elasticity formulations.

  4. 4.

    The choice \(\alpha = \mu\) is derived straightforward in terms of a convergence proof in [5].

  5. 5.

    This procedure also leads to the derivation of elements without drilling degrees of freedom, i.e. classical plane continuum elements where all parts of the stiffness matrix are evaluated analytically.

  6. 6.

    Admirably, even the hourglass stiffness matrices avoid any numerical quadrature which considerably furnishes the element’s effectiveness.

References

  1. MacNeal, R.H., Harder, R.L.: A refined four-noded membrane element with rotational degrees of freedom. Comput. Struct. 28, 75–84 (1988)

    Article  MATH  Google Scholar 

  2. Allman, D.J.: A compatible triangular element including vertex rotations for plane elasticity analysis. Comput. Struct. 19, 1–8 (1984)

    Article  MATH  Google Scholar 

  3. Bergan, P.G., Felippa, C.A.: A triangular membrane element with rotational degrees of freedom. Comput. Methods Appl. Mech. Eng. 50, 25–69 (1985)

    Article  MATH  Google Scholar 

  4. Reissner, E.: A note on variational principles in elasticity. Int. J. Solids Struct. 1, 93–95 (1965)

    Article  Google Scholar 

  5. Hughes, T.J.R., Brezzi, F.: On drilling degrees of freedom. Comput. Methods Appl. Mech. Eng. 72, 105–121 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  6. Zienkiewicz, O.C., Taylor, R.L.: Finite Element Method, vol. 1, The Basis (Finite Element Method). Butterworth-Heinemann, Oxford (2000)

    MATH  Google Scholar 

  7. Hughes, T.J.R.,Masud, A., Harari, I.: Numerical assessment of some membrane elements with drilling degrees of freedom. Comput. Struct. 55, 297–314 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  8. Ibrahimbegovic, A., Taylor, R.L., Wilson, E.L.: A robust quadrilateral membrane finite element with drilling degrees of freedom. Int. J. Numer. Methods Eng. 30, 445–457 (1990)

    Article  MATH  Google Scholar 

  9. Atluri, S.N.: On some new general and complementary energy principles for the rate problems of finite strain, classical elastoplasticity. J. Struct. Mech. 8, 61–92 (1980)

    MathSciNet  Google Scholar 

  10. Cazzani, A., Atluri, S.N.: Four-noded mixed finite elements, using unsymmetric stresses for linear and nonlinear analysis of membranes. Comput. Mech. 11, 229–251 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  11. Iura, M., Atluri, S.N.: Formulation of a membrane finite element with drilling degrees of freedom. Comput. Mech. 9, 417–428 (1992)

    Article  MATH  Google Scholar 

  12. Ibrahimbegovic, A., Frey, F.: Membrane quadrilateral finite elements with rotational degrees of freedom. Eng. Fract. Mec. 43, 12–24 (1992)

    Google Scholar 

  13. Ibrahimbegovic, A., Frey, F.: Geometrically non-linear method of incompatible modes in application to finite elasticity with independent rotations. Int. J. Numer. Methods Eng. 36, 4185–4200 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ibrahimbegovic, A.: Mixed finite element with drilling rotations for plane problems in finite elasticity. Comput. Methods Appl. Mech. Eng. 107, 225–238 (1993)

    Article  MATH  Google Scholar 

  15. Ibrahimbegovic, A., Frey, F.: Stress resultant geometrically non-linear shell theory with drilling rotations. part iii: linearized kinematics. Int. J. Numer. Methods Eng. 37, 3659–3683 (1994)

    Article  MATH  Google Scholar 

  16. Ibrahimbegovic, A., Frey, F.: Variational principles and membrane finite elements with drilling rotations for geometrically non-linear elasticity. Int. J. Numer. Methods Eng. 38, 1885–1900 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  17. Pian, T.H.H., Sumihara, K.: Rational approach for assumed stress finite elements. Int. J. Numer. Methods Eng. 20, 1685–1695 (1984)

    Article  MATH  Google Scholar 

  18. Simo, J.C., Hughes, T.J.R.: On the variational foundations of assumed strain methods. Comput. Methods Appl. Mech. Eng. 53, 1685–1695 (1986)

    MathSciNet  Google Scholar 

  19. Belytschko, T., Bachrach, W.E.: Efficient implementation of quadrilaterals with high coarse-mesh accuracy. Comput. Methods Appl. Mech. Eng. 54, 279–301 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  20. Belytschko, T., Leviathan, I.: Physical stabilization of the 4-node shell element with one point quadrature. Comput. Methods Appl. Mech. Eng. 113, 321–350 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  21. Kugler, St., Fotiu, P.A., Murin, J.: A new quadrilateral membrane finite element with drilling degrees of freedom. In: CMAS 2009. Computational Modelling and Advanced Simulations: International Conference, Bratislava, 30 June to 3 July 2009, STU v Bratislava FEI, 2009. ISBN 978-80-227-3067-9 – CD-Rom

    Google Scholar 

  22. Cosserat, E., Cosserat, F.: Théorie des corps déformables. A. Hermann, Paris (1909)

    Google Scholar 

  23. Nowacki, W.: Theory of Micropolar Elasticity. Courses and Lectures-No. 25. Springer, Berlin (1970)

    Google Scholar 

  24. Eringen, A.C.: Nonlocal Continuum Field Theories. Springer, New York (2002)

    MATH  Google Scholar 

  25. Hughes, T.J.R.: The Finite Element Method, Linear Static and Dynamic Finite Element Analysis. Dover Publications, Mineola (2000)

    MATH  Google Scholar 

  26. Belytschko, T., Liu, W.K., Moran, B.: Nonlinear Finite Elements for Continua and Structures. Wiley, New York, NY (2000)

    MATH  Google Scholar 

  27. Belytschko, T., Bindeman, L.P.: Assumed strain stabilization of the eight node hexahedral. Comput. Methods Appl. Mech. Eng. 105, 225–260 (1993)

    Article  MATH  Google Scholar 

  28. Belytschko, T., Wong, B., Chiang, H.: Advances in one-point quadrature shell elements. Comput. Methods Appl. Mech. Eng. 96, 93–107 (1992)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Kugler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Kugler, S., Fotiu, P.A., Murín, J. (2011). On Drilling Degrees of Freedom. In: Murín, J., Kompiš, V., Kutiš, V. (eds) Computational Modelling and Advanced Simulations. Computational Methods in Applied Sciences, vol 24. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0317-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-0317-9_15

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-0316-2

  • Online ISBN: 978-94-007-0317-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics