Skip to main content

Nonlinear Dynamic Analysis of Partially Supported Beam-Columns on Nonlinear Elastic Foundation Including Shear Deformation Effect

  • Chapter
  • First Online:
Book cover Computational Modelling and Advanced Simulations

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 24))

Abstract

In this paper, a boundary element method is developed for the nonlinear dynamic analysis of beam-columns of arbitrary doubly symmetric simply or multiply connected constant cross section, partially supported on tensionless Winkler foundation, undergoing moderate large deflections under general boundary conditions, taking into account the effects of shear deformation and rotary inertia. The beam-column is subjected to the combined action of arbitrarily distributed or concentrated transverse loading and bending moments in both directions as well as to axial loading. To account for shear deformations, the concept of shear deformation coefficients is used. Five boundary value problems are formulated with respect to the transverse displacements, to the axial displacement and to two stress functions and solved using the Analog Equation Method, a BEM based method. Application of the boundary element technique yields a nonlinear coupled system of equations of motion. The solution of this system is accomplished iteratively by employing the average acceleration method in combination with the modified Newton Raphson method. The evaluation of the shear deformation coefficients is accomplished from the aforementioned stress functions using only boundary integration. The proposed model takes into account the coupling effects of bending and shear deformations along the member as well as the shear forces along the span induced by the applied axial loading. Numerical examples are worked out to illustrate the efficiency, wherever possible the accuracy and the range of applications of the developed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hetenyi, M.: Beams and plates on elastic foundations and related problems. Appl. Mech. Rev. 19, 95–102 (1966)

    Google Scholar 

  2. Rades, M.: Dynamic analysis of an inertial foundation model. Int. J. Solids Struct. 8, 1353–1372 (1972)

    Article  Google Scholar 

  3. Wang, T., Stephens, J.: Natural frequencies of timoshenko beams on Pasternak foundation. J. Sound Vib. 51(2), 149–155 (1977)

    Article  MATH  Google Scholar 

  4. De Rosa, M.: Free vibrations of Timoshenko beams on two-parameter elastic foundation. Comput. Struct. 57(1), 151–156 (1995)

    Article  MATH  Google Scholar 

  5. El-Mously, M.: Fundamental frequencies of Timoshenko beams mounted on Pasternak foundation. J. Sound Vib. 228(2), 452–457 (1999)

    Article  Google Scholar 

  6. Zhang, Y., et al.: Vibration and buckling of a double-beam system under compressive axial loading. J. Sound Vib. 318, 341–352 (2008)

    Article  Google Scholar 

  7. Coskun, I.: The response of a finite beam on a tensionless pasternak foundation subjected to a harmonic load. Eur. J. Mech. A/Solids 212, 151–161 (2003)

    Article  Google Scholar 

  8. Matsunaga, H.: Vibration and buckling of deep beam-columns on two-parameters elastic foundation. J. Sound Vib. 228(2), 359–376 (1999)

    Article  Google Scholar 

  9. Coskun, I.: Non-linear vibrations of a beam resting on a tensionless Winkler foundation. J. Sound Vib. 236(3). 401–411 (2000)

    Article  Google Scholar 

  10. Chen, C.: DQEM vibration analyses of non-prismatic shear deformable beams resting on elastic foundations. J. Sound Vib. 255(5), 989–999 (2002)

    Article  Google Scholar 

  11. Chen, W., et al.: A mixed method for bending and free vibration of beams resting on a Pasternak elastic foundation. Appl. Math. Model. 28, 877–890 (2004)

    Article  MATH  Google Scholar 

  12. Kim, S., Cho, Y.H.: Vibration and dynamic buckling of shear beam-columns on elastic foundation under moving harmonic loads. Int. J. Solids Struct. 43, 393–412 (2006)

    Article  MATH  Google Scholar 

  13. Yokoyama, T.: Parametric instability of Timoshenko beams resting on an elastic foundation. Comput. Struct. 28(2), 207–216 (1988)

    Article  MATH  Google Scholar 

  14. Karamanlidis, D., Prakash, V.: Buckling and vibration analysis of flexible beams resting on an elastic half-space. Earthquake Eng. Struct. Dynam. 16, 1103–1114 (1988)

    Article  Google Scholar 

  15. Arboleda, M. et al.: Timoshenko beam-column with generalized end conditions on elastic foundation: dynamic-stiffness matrix and load vector. J. Sound Vib. 310, 1057–1079 (2007)

    Google Scholar 

  16. Lewandowski, R.: Nonlinear free vibrations of multispan beams on elastic supports. Comput. Struct. 32(2), 305–312 (1989)

    Article  MATH  Google Scholar 

  17. Katsikadelis, J.: The analog equation method. A boundary-only integral equation method for nonlinear static and dynamic problems in general bodies. Theor. Appl. Mech. 27, 13–38 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  18. Chang, S.: Studies of Newmark method for solving nonlinear systems: (I) basic analysis. J. Chinese Inst. Eng. 27(5), 651–662 (2004)

    Google Scholar 

  19. Isaacson, E., Keller, H.B.: Analysis of Numerical Methods. Wiley, New York, NY (1966)

    MATH  Google Scholar 

  20. Timoshenko, S., Goodier, J.: Theory of Elasticity, 3rd edn. McGraw-Hill, New York, NY (1984)

    Google Scholar 

  21. Cowper, G.: The shear coefficient in Timoshenko’s beam theory. J. Appl. Mech. ASME. 33(2), 335–340 (1966)

    MATH  Google Scholar 

  22. Schramm, U., et al.: On the shear deformation coefficient in beam theory. Finite Elem. Anal. Des. 16, 141–162 (1994)

    Article  MATH  Google Scholar 

  23. Schramm, U., et al.: Beam stiffness matrix based on the elasticity equations. Int. J. Numer. Methods Eng. 40, 211–232 (1997)

    Article  Google Scholar 

  24. Stephen, N.: Timoshenko’s shear coefficient from a beam subjected to gravity loading. ASME J. Appl. Mech. 47, 121–127 (1980)

    Article  MATH  Google Scholar 

  25. Hutchinson, J.R.: Shear coefficients for Timoshenko beam theory. ASME J. Appl. Mech. 68, 87–92 (2001)

    Article  MATH  Google Scholar 

  26. Ramm, E., Hofmann, T.: Stabtragwerke: Der Ingenieurbau. In: Mehlhorn, G. (ed.) Band Baustatik/Baudynamik. Ernst & Sohn, Berlin (1995)

    Google Scholar 

  27. Rothert, H., Gensichen, V.: Nichtlineare Stabstatik. Springer, Berlin (1987)

    MATH  Google Scholar 

  28. Sapountzakis, E., Mokos, V.: A BEM solution to transverse shear loading of beams. Comput. Mech. 36, 384–397 (2005)

    Article  MATH  Google Scholar 

  29. Thomson, W.: Theory of Vibration with Applications. Prentice–Hall, Englewood Cliffs, NJ (1981)

    MATH  Google Scholar 

  30. Sapountzakis, E., Katsikadelis, J.: Analysis of plates reinforced with beams. Comput. Mech. 26, 66–74 (2000)

    Article  MATH  Google Scholar 

  31. Timoshenko, S., et al.: Vibration Problems in Engineering, 4th edn. Wiley, New York, NY (1974)

    Google Scholar 

  32. Lai, Y., et al.: Dynamic response of beams on elastic foundation. Int. J. Struct. Eng. 118, 853–858 (1992)

    Article  Google Scholar 

  33. Thambiratnam, D., Zhuge, Y.: Free vibration analysis of beams on elastic foundation. Comput. Struct. 60(6), 971–980 (1996)

    Article  MATH  Google Scholar 

  34. Friswell, M., et al.: Vibration analysis of beams with non-local foundation using the finite element method. Int. J. Numer. Methods Eng. 71(11), 1365–1386 (2007)

    Article  MATH  Google Scholar 

  35. Calim, F.: Dynamic analysis of beams on viscoelastic foundation. Eur. J. Mech. A/Solids 28, 469–476 (2009)

    Article  MATH  Google Scholar 

  36. ANSYS Swanson Analysis System, Inc., 201 Johnson Road, Houston, PA 15342–1300, USA

    Google Scholar 

Download references

Acknowledgements

The work of this paper was conducted from the “DARE” project, financially supported by a European Research Council (ERC) Advanced Grant under the “Ideas” Programme in Support of Frontier Research [Grant Agreement 228254].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E.J. Sapountzakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Sapountzakis, E., Kampitsis, A. (2011). Nonlinear Dynamic Analysis of Partially Supported Beam-Columns on Nonlinear Elastic Foundation Including Shear Deformation Effect. In: Murín, J., Kompiš, V., Kutiš, V. (eds) Computational Modelling and Advanced Simulations. Computational Methods in Applied Sciences, vol 24. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0317-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-0317-9_1

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-0316-2

  • Online ISBN: 978-94-007-0317-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics