Skip to main content

Native Fire Regimes and Landscape Resilience

  • Chapter
  • First Online:
The Landscape Ecology of Fire

Part of the book series: Ecological Studies ((ECOLSTUD,volume 213))

Abstract

First introduced by Holling (1973), the term “resilience” has been used widely in the ecological literature, but it is not always defined and is rarely quantified. Holling suggested that ecological resilience is the amount of disturbance that an ecosystem could withstand without changing self-organized processes and structures. His description suggests that resilience may be: (1) represented by an observable set of properties; (2) defined by measures of degree; and (3) related to system states and their (in)tolerance to reshaping, and that some properties of resilience may be quantifiable. We also see the idea of fire resilience in the literature (e.g., MacGillivray and Grime 1995; He and Mladenoff 1999; Díaz-Delgado et al. 2002; Brown et al. 2004; Pausas et al. 2004), but this term has different meanings in diverse contexts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agee, J.K. 1993. Fire ecology of Pacific Northwest forests. Washington: Island Press.

    Google Scholar 

  • Arnold, B.C. 1983. Pareto distributions. Fairland: International Co-operative Publishing House.

    Google Scholar 

  • Bailey, R.G. 1995. Descriptions of the ecoregions of the United States. 2nd ed. Misc. Publ. No. 1391, Map scale 1:7,500,000, U.S. Forest Service.

    Google Scholar 

  • Bak, P. 1996. How nature works: The science of self-organized criticality. New York: Copernicus.

    Book  Google Scholar 

  • Boer, M.M., R.J. Sadler, R.A. Bradstock, A.M. Gill, and P.F. Grierson. 2008. Spatial scale invariance of southern Australian forest fires mirrors the scaling behaviour of fire-driving weather events. Landscape Ecology 23: 899–913.

    Google Scholar 

  • Bond, W.J., and B.W. van Wilgen. 1996. Fire and plants. London: Chapman & Hall.

    Book  Google Scholar 

  • Bond, W.J., F.I. Woodward, and G.F. Midgley. 2005. The global distribution of ecosystems in a world without fire. The New Phytologist 165: 525–538.

    Article  CAS  Google Scholar 

  • Brown, R.T., J.K. Agee, and J.F. Franklin. 2004. Forest restoration and fire: principles in the context of place. Conservation Biology 18: 903–912.

    Article  Google Scholar 

  • Burroughs, S.M., and S.F. Tebbens. 2001. Upper-truncated power laws in natural systems. Pure and Applied Geophysics 158: 741–757.

    Article  Google Scholar 

  • Carlson, J.M., and J. Doyle. 1999. Highly optimized tolerance: A mechanism for power laws in designed systems. Physical Review E 60: 1412–1427.

    Article  CAS  Google Scholar 

  • Carlson, J.M., and J. Doyle. 2000. Highly optimized tolerance: robustness and design in complex systems. Physical Review Letters 84: 2529–2532.

    Article  CAS  Google Scholar 

  • Carlson, J.M., and J. Doyle. 2002. Complexity and robustness. Proceedings of the National Academy of Science 99(Suppl 1): 2538–2545.

    Article  Google Scholar 

  • Clark, R.M., S.J.D. Cox, and G.M. Laslett. 1999. Geophysical Journal International 136: 357–372.

    Article  Google Scholar 

  • Clauset, A., C. Shalizi, and M.E.J. Newman 2009. Power-Law Distributions in Empirical Data. SIAM Review 51(4): 661–703.

    Article  Google Scholar 

  • D’Antonio, C.M., and P.M. Vitousek. 1992. Biological invasions by exotic grasses, the grass/fire cycle, and global change. Annual Review of Ecology and Systematics 23: 63–87.

    Article  Google Scholar 

  • Davis, F.W., and M.A. Moritz. 2001. Mechanisms of disturbance. In Encyclopedia of biodiversity, ed. S. Levin, 153–160. New York: Academic.

    Chapter  Google Scholar 

  • Díaz-Delgado, R., F. Lloret, X. Pons, and J. Terradas. 2002. Satellite evidence of decreasing resilience in Mediterranean plant communities after recurrent wildfires. Ecology 83: 2293–2303.

    Article  Google Scholar 

  • Doyle, J., and J.M. Carlson. 2000. Power laws, highly optimized tolerance, and generalized source coding. Physical Review Letters 84: 5656–5659.

    Article  CAS  Google Scholar 

  • Falk, D.A., C. Miller, D. McKenzie, and A.E. Black. 2007. Cross-scale analysis of fire regimes. Ecosystems 10: 809–823.

    Article  Google Scholar 

  • Finney, M.A., R.C. Seli, C.W. McHugh, A.A. Ager, B. Bahro, and J.K. Agee. 2007. Simulation of long-term landscape-level fuel treatment effects on large wildfires. International Journal of Wildland Fire 16: 712–727.

    Article  Google Scholar 

  • Gill, A.M. 1975. Fire and the Australian flora: a review. Australian Forestry 38: 4–25.

    Article  Google Scholar 

  • Grimm, V., and C. Wissel. 1997. Babel, or the ecological stability discussions–an inventory and analysis of terminology and a guide for avoiding confusion. Oecologia 109: 323–334.

    Article  CAS  Google Scholar 

  • Gunderson, L.H., and C.S. Holling. 2002. Panarchy: understanding transformations in human and natural systems. Washington: Island Press.

    Google Scholar 

  • Hann, W.J., J.L. Jones, M.G. Karl, P.F. Hessburg, R.E. Keane, D.G. Long, J.P. Menakis, C.H. McNicoll, S.G. Leonard, R.A. Gravenmier, and B.G. Smith. 1997. An assessment of landscape dynamics of the Basin. In An assessment of ecosystem components in the interior Columbia Basin and portions of the Klamath and Great Basins. General Technical Report PNW-GTR-405, tech. eds. T.M. Quigley and S.J. Arbelbide. Portland: U.S. Forest Service.

    Google Scholar 

  • He, H.S., and D.J. Mladenoff. 1999. Spatially explicit and stochastic simulation of forest-landscape fire disturbance and succession. Ecology 80: 81–90.

    Article  Google Scholar 

  • Hergarten, S. 2002. Self-organized criticality in earth systems. Germany: Springer.

    Book  Google Scholar 

  • Herrera, C.M. 1992. Historical effects and sorting processes as explanation for contemporary ecological patterns: character syndromes in mediterranean woody plants. The American Naturalist 140: 421–446.

    Article  Google Scholar 

  • Hessburg, P.F., B.G. Smith, and R.B. Salter. 1999a. Detecting change in forest spatial patterns from reference conditions. Ecological Applications 9: 1232–1252.

    Article  Google Scholar 

  • Hessburg, P.F., B.G. Smith, and R.B. Salter. 1999b. Using natural variation estimates to detect ecologically important change in forest spatial patterns: A case study of the eastern Washington Cascades. Research Paper PNW-RP-514. Portland: U.S. Forest Service.

    Google Scholar 

  • Hessburg, P.F., J.K. Agee, and J.F. Franklin. 2005. Dry mixed conifer forests and wildland fires of the inland Northwest: contrasting the landscape ecology of the pre-settlement and modern eras. Forest Ecology and Management 211: 117–139.

    Article  Google Scholar 

  • Hessl, A.E., D. McKenzie, and R. Schellhaas. 2004. Drought and Pacific decadal oscillation linked to fire occurrence in the inland Pacific Northwest. Ecological Applications 14: 425–442.

    Article  Google Scholar 

  • Heyerdahl, E.K., L.B. Brubaker, and J.K. Agee. 2002. Annual and decadal climate forcing of historical fire regimes in the interior Pacific Northwest, USA. Holocene 12: 597–604.

    Article  Google Scholar 

  • Holling, C.S. 1973. Resilience and stability of ecological systems. Annual Review of Ecology and Systematics 4: 1–23.

    Article  Google Scholar 

  • Holling, C.S., and L.H. Gunderson. 2002. Resilience and adaptive cycles. In Panarchy: understanding transformations in human and natural systems, eds. C.S. Holling and L.H. Gunderson, 25–62. Washington: Island Books.

    Google Scholar 

  • Johnson, E.A., and S.L. Gutsell. 1994. Fire frequency models, methods and interpretations. Advances in Ecological Research 25: 239–287.

    Article  Google Scholar 

  • Kauffman, S.A. 1993. The origins of order: self-organization and selection in evolution. Oxford: Oxford University Press.

    Google Scholar 

  • Krawchuk, M.A., M.A. Moritz, M.A. Parisien, J. Van Dorn, and K. Hayhoe. 2009. Global pyrogeography: the current and future distribution of wildfire. PLoS ONE 4(4), e5102. doi:10.1371/journal.pone.0005102.

  • Landres, P., P. Morgan, and F. Swanson. 1999. Overview of the use of natural variability in managing ecological systems. Ecological Applications 9: 1279–1288.

    Google Scholar 

  • Levin, S.A. 1992. The problem of pattern and scale in ecology. Ecology 73: 1943–1967.

    Article  Google Scholar 

  • MacGillivray, C.W., and J.P. Grime. 1995. Testing predictions of the resistance and resilience of vegetation subjected to extreme events. Functional Ecology 9: 640–649.

    Article  Google Scholar 

  • Malamud, B.D., G. Morein, and D.L. Turcotte. 1998. Forest fires: an example of self-organized critical behavior. Science 281: 1840–1842.

    Article  CAS  Google Scholar 

  • Malamud, B.D., and D.L. Turcotte. 2006. The applicability of power law frequency statistics to floods. Journal of Hydrology 322: 168–180.

    Article  Google Scholar 

  • Malamud, B.D., J.D.A. Millington, and G.L.W. Perry. 2004. Characterizing wildfire regimes in the United States. Proceedings of the National Academy of Sciences 102: 4694–4699.

    Article  Google Scholar 

  • Martin, R.E., and D.B. Sapsis. 1992. Fires as agents of biodiversity: pyrodiversity promotes biodiversity. In Proceedings of the symposium on biodiversity of northwestern California. Santa Rosa, ed. H.M. Herner, 28–31. Berkeley: University of California Center for Wildland Resources Report 29.

    Google Scholar 

  • Millar, C.I., N.L. Stephenson, and S.L. Stephens. 2007. Climate change and forests of the future: Managing in the face of uncertainty. Ecological Applications 17: 2145–2151.

    Article  Google Scholar 

  • Moritz, M.A. 1997. Analyzing extreme disturbance events: fire in Los Padres National Forest. Ecological Applications 7: 1252–1262.

    Article  Google Scholar 

  • Moritz, M.A. 1999. Controls on disturbance regime dynamics: fire in Los Padres National Forest. Ph.D. dissertation, University of California, Santa Barbara.

    Google Scholar 

  • Moritz, M.A. 2003. Spatio-temporal analysis of controls of shrubland fire regimes: age dependency and fire hazard. Ecology 84: 351–361.

    Article  Google Scholar 

  • Moritz, M.A., and S.L. Stephens. 2008. Fire and sustainability: considerations for California’s altered future climate. Climatic Change 87(Suppl 1): S265–S271.

    Article  Google Scholar 

  • Moritz, M.A., J.E. Keeley, E.A. Johnson, and A.A. Schaffner. 2004. Testing a basic assumption of shrubland fire management: how important is fuel age? Frontiers in Ecology and the Environment 2: 67–72.

    Article  Google Scholar 

  • Moritz, M.A., M.E. Morais, L.A. Summerell, J.M. Carlson, and J. Doyle. 2005. Wildfires, complexity, and highly optimized tolerance. Proceedings of the National Academy of Sciences of the United States of America 102: 17912–17917.

    Article  CAS  Google Scholar 

  • Moritz, M.A., T.J. Moody, L.J. Miles, M.M. Smith, and P. de Valpine. 2009. The fire frequency analysis branch of the pyrostatistics tree: sampling decisions and censoring in fire interval data. Environmental and Ecological Statistics 16: 271–289.

    Article  Google Scholar 

  • Nash, J.C. 1990. Compact numerical methods for computers: linear algebra and function minimisation. New York: IPO Publishing.

    Google Scholar 

  • Newman, M.E.J. 2005. Power laws, Pareto distributions and Zipf’s law. Contemporary Physics 46: 323–351.

    Article  Google Scholar 

  • Nonaka, E., and T.A. Spies. 2005. Historical range of variability in landscape structure: A simulation study in Oregon, USA. Ecological Applications 15: 1727–1746.

    Article  Google Scholar 

  • Odion, D.C., E.J. Frost, J.R. Strittholt, H. Jiang, D.A. DellaSala, and M.A. Moritz. 2004. Patterns of fire severity and forest conditions in the western Klamath Mountains, northwestern California, U.S.A. Conservation Biology 18: 927–936.

    Article  Google Scholar 

  • Odion, D.C., M.A. Moritz, and D.A. DellaSala. 2009. Alternative community states maintained by fire in the Klamath Mountains, USA. Journal of Ecology 98: 96–105.

    Article  Google Scholar 

  • Parisien, M.A., and M.A. Moritz. 2009. Environmental controls on the distribution of wildfire at multiple spatial scales. Ecological Monographs 79: 127–154.

    Article  Google Scholar 

  • Pausas, J.G., R.A. Bradstock, and D.A. Keith. 2004. Plant functional traits in relation to fire in crown-fire ecosystems. Ecology 85: 1085–1100.

    Article  Google Scholar 

  • Pickett, S.T.A., and P.S. White. 1985. The ecology of natural disturbance and patch dynamics. New York: Academic.

    Google Scholar 

  • Perera, A.H., and L.J. Buse. 2004. Emulating natural disturbance in forest management: an overview. In Emulating natural forest landscape disturbances: concepts and applications, eds. A.H. Perera, L.J. Buse, and M.G. Weber, 3–7. New York: Columbia University Press.

    Google Scholar 

  • Peterson, G.D. 2002. Contagious disturbance, ecological memory, and the emergence of landscape pattern. Ecosystems 5: 329–338.

    Article  Google Scholar 

  • Peterson, G.D., C.R. Allen, and C.S. Holling. 1998. Ecological resilience, biodiversity, and scale. Ecosystems 1: 6–18.

    Article  Google Scholar 

  • Polakow, D.A., and T.T. Dunne. 1999. Modelling fire-return interval T: stochasticity and censoring in the two-parameter Weibull model. Ecological Modelling 121: 79–102.

    Article  Google Scholar 

  • Polakow, D.A., and T.T. Dunne. 2001. Numerical recipes for disaster: changing hazard and the stand-origin-map. Forest Ecology and Management 147: 183–196.

    Article  Google Scholar 

  • Reed, W.J., and K.S. McKelvey. 2002. Power-law behavior and parametric models for the size-distribution of forest fires. Ecological Modelling 150: 239–254.

    Article  Google Scholar 

  • Ricotta, C., G. Avena, and M. Marchetti. 1999. The flaming sandpile: self-organized criticality and wildfires. Ecological Modelling 119: 73–77.

    Article  Google Scholar 

  • Robert, C., J.M. Carlson, and J. Doyle. 2001. Highly optimized tolerance in epidemic models incorporating local optimization and growth. Physical Review E 63: 056122.

    Article  CAS  Google Scholar 

  • Romme, W. 1980. Fire history terminology: report of the ad hoc committee. In Proceedings of the fire history workshop. General Technical Report RM-GTR-81, eds. M.A. Stokes and J.H. Dieterich, 135–137. Fort Collins: U.S. Forest Service.

    Google Scholar 

  • Romme, W.H., E.H. Everham, L.E. Frelich, M.A. Moritz, and R.E. Sparks. 1998. Are large infrequent disturbances qualitatively different from small frequent disturbances? Ecosystems 1: 524–534.

    Article  Google Scholar 

  • Schmidt, K.M., J.P. Menakis, C. Hardy, D.L. Bunnell, and W.J. Hann. 2002. Development of coarse-scale spatial data for wildland fire and fuel management. General Technical Report RMRS-GTR-87. Fort Collins: U.S. Forest Service.

    Google Scholar 

  • Schoennagel, T., T.T. Veblen, W.H. Romme, J.S. Sibold, and E.R. Cook. 2005. ENSO and PDO variability affect drought-induced fire occurrence in Rocky Mountain subalpine forests. Ecological Applications 15: 2000–2014.

    Article  Google Scholar 

  • Schoennagel, T., E.A. Smithwick, and M.G. Turner. 2008. Landscape heterogeneity following large fires: Insights from Yellowstone National Park, USA. International Journal of Wildland Fire 17: 742–753.

    Article  Google Scholar 

  • Solow, A.R. 2005. Power laws without complexity. Ecology Letters 8: 361–363.

    Article  Google Scholar 

  • Song, W.G., F. Weicheng, B.H. Wang, and J.J. Zhou. 2001. Self-organized criticality of forest fire in China. Ecological Modelling 145: 61–68.

    Article  Google Scholar 

  • Strauss, D., L. Bednar, and R. Mees. 1989. Do one percent of forest fires cause ninety-nine percent of the damage? Forest Science 35: 319–328.

    Google Scholar 

  • Swetnam, T.W., and J.L. Betancourt. 1998. Meso-scale disturbance and ecological response to decadal climatic variability in the American Southwest. Journal of Climate 11: 3128–3147.

    Article  Google Scholar 

  • Swetnam, T.W., C.D. Allen, and J.L. Betancourt. 1999. Applied historical ecology: using the past to manage the future. Ecological Applications 9: 1189–1206.

    Article  Google Scholar 

  • Turcotte, D.L. 1999. Self-organized criticality. Reports on Progress in Physics 62: 1377–1429.

    Article  Google Scholar 

  • Turcotte, D.L., and B.D. Malamud. 2004. Landslides, forest fires, and earthquakes: examples of self-organized critical behaviour. Acta Physica 340: 580–589.

    Article  Google Scholar 

  • Turner, M.G. 1989. Landscape ecology: The effects of pattern on process. Annual Review of Ecology and Systematics 20: 171–197.

    Article  Google Scholar 

  • Turner, M.G., and W.H. Romme. 1994. Landscape dynamics in crown fire ecosystems. Landscape Ecology 9: 59–77.

    Article  Google Scholar 

  • White, E., B. Enquist, and J.L. Green. 2008. On estimating the exponent of power-law frequency distributions. Ecology 89: 905–912.

    Article  Google Scholar 

  • White, P.S., and A. Jentsch. 2001. The Search for Generality in Studies of Disturbance and Ecosystem Dynamics. Progress in Botany 62: 399–450.

    Article  Google Scholar 

  • Wu, J., and O.L. Loucks. 1995. From balance of nature to hierarchical patch dynamics: A paradigm shift in ecology. The Quarterly Review of Biology 70: 439–466.

    Article  Google Scholar 

  • Yee, T.W. 2006. Constrained additive ordination. Ecology 87: 203–213.

    Article  Google Scholar 

  • Yee, T.W. 2008. The VGAM package. R News 8: 28–39.

    Google Scholar 

  • Zedler, P.H., C.R. Gautier, and G.S. McMaster. 1983. Vegetation change in response to extreme events: the effect of a short interval between fires in California chaparral and coastal scrub. Ecology 64: 809–818.

    Article  Google Scholar 

  • Zhou, T., and J.M. Carlson. 2000. Dynamics and changing environments in highly optimized tolerance. Physical Review E 62: 3197–3204.

    Article  CAS  Google Scholar 

  • Zhou, T., J.M. Carlson, and J. Doyle. 2002. Mutation, specialization, and hypersensitivity in highly optimized tolerance. Proceedings of the National Academy of Sciences of the United States of America 99: 2049–2054.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Max A. Moritz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Moritz, M.A., Hessburg, P.F., Povak, N.A. (2011). Native Fire Regimes and Landscape Resilience. In: McKenzie, D., Miller, C., Falk, D. (eds) The Landscape Ecology of Fire. Ecological Studies, vol 213. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0301-8_3

Download citation

Publish with us

Policies and ethics