Skip to main content

RNAi-based Approaches to the Treatment of Brain Tumors

  • Chapter
  • First Online:
  • 819 Accesses

Abstract

The discovery of RNA interference (RNAi) as an alternate mode of gene regulation utilized by eukaryotes has greatly expanded the arsenal of molecular tools that a biomedical researcher can employ to target tumors. Thus, it will be natural to extend this methodology from bench to the bedside as a novel mode of clinical intervention against intracranial tumors, as these are frequently refractive to conventional therapies, i.e. surgery, radiotherapy, and chemotherapy. Induction of RNAi in the targeted tumor can be multifaceted, with two primary modes of therapeutic intervention postulated to date; delivery of in silico designed and in vitro synthesized non-coding RNA molecules to the tumor, or the pharmacological perturbation of non-coding RNA molecules that are endogenously expressed by the tumor. Both modes silence gene expression, but via somewhat different molecular pathways. Two key non-coding RNA molecules that are known to impart RNAi are small interfering RNA and microRNA. Both are currently under investigation in pre-clinical and clinical settings for their potential utility against tumors, with small interfering RNA already proving their efficacy in several small-scale clinical trials. However, despite demonstration of excellent potential as an anti-cancer therapy at the bench, the current inability to deliver therapeutically significant levels of RNAi into the diseased tissue remains a primary hurdle that needs to be overcome for widespread utility at the bedside. This chapter presents an update on both the latest methodologies that have been utilized for induction of RNAi in brain tumors, both in pre-clinical and clinical settings, as well as descriptions of the molecular pathways that have been targeted via RNAi. The pioneering RNAi-based clinical trials that have been tested against brain tumors are also described to illustrate both the utility and the impact of this novel mode of brain tumor therapy at the bedside.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Amarzguioui M, Lundberg P, Cantin E, et al. Rational design and in vitro and in vivo delivery of Dicer substrate siRNA. Nat Protoc. 2006;1:508–17.

    Article  CAS  PubMed  Google Scholar 

  • Birchler JA, Kavi HH. Molecular biology. Slicing and dicing for small RNAs. Science. 2008;320:1023–4.

    Article  CAS  PubMed  Google Scholar 

  • Boado RJ. RNA interference and nonviral targeted gene therapy of experimental brain cancer. NeuroRx. 2005;2:139–50.

    Article  PubMed  Google Scholar 

  • Boado RJ. Blood-brain barrier transport of non-viral gene and RNAi therapeutics. Pharm Res. 2007;24:1772–87.

    Article  CAS  PubMed  Google Scholar 

  • Brummelkamp TR, Bernards R, Agami R. A system for stable expression of short interfering RNAs in mammalian cells. Science. 2002;296:550–3.

    Article  CAS  PubMed  Google Scholar 

  • Bumcrot D, Manoharan M, Koteliansky V, et al. RNAi therapeutics: a potential new class of pharmaceutical drugs. Nat Chem Biol. 2006;2:711–9.

    Article  CAS  PubMed  Google Scholar 

  • Cardoso ALC, Simoes S, de Almeida LP, et al. SiRNA detivery by a transferrin-associated lipid-based vector: a non-viral strategy to mediate gene silencing. J Gene Med. 2007;9:170–83.

    Article  CAS  PubMed  Google Scholar 

  • Chan JA, Krichevsky AM, Kosik KS. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res. 2005;65:6029–33.

    Article  CAS  PubMed  Google Scholar 

  • Chang K, Elledge SJ, Hannon GJ. Lessons from Nature: microRNA-based shRNA libraries. Nat Methods. 2006;3:707–14.

    Article  CAS  PubMed  Google Scholar 

  • Conti A, Aguennouz M, La Torre D, et al. MiR-21 and 221 upregulation and miR-181b downregulation in human grade II-IV astrocytic tumors. J Neurooncol. 2009;93:325–32.

    Article  CAS  PubMed  Google Scholar 

  • Corsten MF, Miranda R, Kasmieh R, et al. MicroRNA-21 knockdown disrupts glioma growth in vivo and displays synergistic cytotoxicity with neural precursor cell delivered S-TRAIL in human gliomas. Cancer Res. 2007;67:8994–9000.

    Article  CAS  PubMed  Google Scholar 

  • Cullen BR. Enhancing and confirming the specificity of RNAi experiments. Nat Methods. 2006a;3:677–81.

    Article  CAS  PubMed  Google Scholar 

  • Cullen BR. Induction of stable RNA interference in mammalian cells. Gene Ther. 2006b;13:503–8.

    Article  CAS  PubMed  Google Scholar 

  • Davis ME, Zuckerman JE, Choi CH, et al. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature. 2010;464:1067–70.

    Article  CAS  PubMed  Google Scholar 

  • Dong WL, Hu J, Hu SY, et al. RNA interference affects tumorigenicity and expression of insulin-like growth factor-1, insulin-like growth factor-1 receptor, and basic fibroblast growth factor-2 in rat C6 glioma cells. Neural Regen Res. 2009;4:597–605.

    CAS  Google Scholar 

  • Elbashir SM, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 2001;411:494–8.

    Article  CAS  PubMed  Google Scholar 

  • Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391:806–11.

    Article  CAS  PubMed  Google Scholar 

  • Fountaine TM, Wood MJ, Wade-Martins R. Delivering RNA interference to the mammalian brain. Curr Gene Ther. 2005;5:399–410.

    Article  CAS  PubMed  Google Scholar 

  • Gabriely G, Wurdinger T, Kesari S, et al. MicroRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators. Mol Cell Biol. 2008;28:5369–80.

    Article  CAS  PubMed  Google Scholar 

  • Gillespie DL, Whang K, Ragel BT, et al. Silencing of hypoxia inducible factor-1alpha by RNA interference attenuates human glioma cell growth in vivo. Clin Cancer Res. 2007;13:2441–8.

    Article  CAS  PubMed  Google Scholar 

  • Goga A, Benz C. Anti-oncomir suppression of tumor phenotypes. Mol Interv. 2007;7:199–202.

    Article  CAS  PubMed  Google Scholar 

  • Gogineni VR, Nalla AK, Gupta R, et al. Radiation-inducible silencing of uPA and uPAR in vitro and in vivo in meningioma. Int J Oncol. 2010;36:809–16.

    CAS  Google Scholar 

  • Gondi CS, Dinh DH, Klopfenstein JD, et al. MMP-2 downregulation mediates differential regulation of cell death via ErbB-2 in glioma xenografts. Int J Oncol. 2009;35:257–63.

    CAS  PubMed  Google Scholar 

  • Gondi CS, Lakka SS, Dinh DH, et al. Intraperitoneal injection of a hairpin RNA-expressing plasmid targeting urokinase-type plasminogen activator (uPA) receptor and uPA retards angiogenesis and inhibits intracranial tumor growth in nude mice. Clin Cancer Res. 2007;13:4051–60.

    Article  CAS  PubMed  Google Scholar 

  • Guo S, Kemphues KJ. Par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell. 1995;81:611–20.

    Article  CAS  PubMed  Google Scholar 

  • Guo D, Wang B, Han F, et al. RNA interference therapy for glioblastoma. Expert Opin Biol Ther. 2010;10:927–36.

    Article  CAS  PubMed  Google Scholar 

  • He L, Thomson JM, Hemann MT, et al. A microRNA polycistron as a potential human oncogene. Nature. 2005;435:828–33.

    Article  CAS  PubMed  Google Scholar 

  • Heidel JD, Hu S, Liu XF, et al. Lack of interferon response in animals to naked siRNAs. Nat Biotechnol. 2004;22:1579–82.

    Article  CAS  PubMed  Google Scholar 

  • Hubbell HR, Boyer JE, Roane P, et al. Cyclic AMP mediates the direct antiproliferative action of mismatched double-stranded RNA. Proc Natl Acad Sci USA. 1991;88:906–10.

    Article  CAS  PubMed  Google Scholar 

  • Jackson AL, Burchard J, Schelter J, et al. Widespread siRNA “off-target” transcript silencing mediated by seed region sequence complementarity. RNA. 2006;12:1179–87.

    Article  CAS  PubMed  Google Scholar 

  • Jain KK. Use of nanoparticles for drug delivery in glioblastoma multiforme. Expert Rev Neurother. 2007;7:363–72.

    Article  CAS  PubMed  Google Scholar 

  • Kang CS, Zhang ZY, Jia ZF, et al. Suppression of EGFR expression by antisense or small interference RNA inhibits U251 glioma cell growth in vitro and in vivo. Cancer Gene Ther. 2006;13:530–8.

    Article  CAS  PubMed  Google Scholar 

  • Kapranov P, Cheng J, Dike S, et al. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science. 2007;316:1484–8.

    Article  CAS  PubMed  Google Scholar 

  • Kargiotis O, Chetty C, Gondi CS, et al. Adenovirus-mediated transfer of siRNA against MMP-2 mRNA results in impaired invasion and tumor-induced angiogenesis, induces apoptosis in vitro and inhibits tumor growth in vivo in glioblastoma. Oncogene. 2008;27:4830–40.

    Article  CAS  PubMed  Google Scholar 

  • Khvorova A, Reynolds A, Jayasena SD. Functional siRNAs and miRNAs exhibit strand bias. Cell. 2003;115:209–16.

    Article  CAS  PubMed  Google Scholar 

  • Kim DH, Behlke MA, Rose SD, et al. Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy. Nat Biotechnol. 2005;23:222–6.

    Article  CAS  PubMed  Google Scholar 

  • Kim VN, Nam JW. Genomics of microRNA. Trends Genet. 2006;22:165–73.

    Article  CAS  PubMed  Google Scholar 

  • Kim DH, Rossi JJ. Strategies for silencing human disease using RNA interference. Nat Rev Genet. 2007;8:173–84.

    Article  CAS  PubMed  Google Scholar 

  • Krol J, Krzyzosiak WJ. Structural aspects of microRNA biogenesis. IUBMB Life. 2004;56:95–100.

    Article  CAS  PubMed  Google Scholar 

  • Krutzfeldt J, Rajewsky N, Braich R, et al. Silencing of microRNAs in vivo with ‘antagomirs’. Nature. 2005;438:685–9.

    Article  PubMed  Google Scholar 

  • Lau NC, Seto AG, Kim J, et al. Characterization of the piRNA complex from rat testes. Science. 2006;313:363–7.

    Article  CAS  PubMed  Google Scholar 

  • Lavon I, Zrihan D, Granit A, et al. Gliomas display a microRNA expression profile reminiscent of neural precursor cells. Neuro Oncol. 2010;12:422–33.

    CAS  PubMed  Google Scholar 

  • Lesniak MS. Novel advances in drug delivery to brain cancer. Technol Cancer Res Treat. 2005;4:417–28.

    CAS  PubMed  Google Scholar 

  • Liu J, Carmell MA, Rivas FV, et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science. 2004;305:1437–41.

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Fortin K, Mourelatos Z. MicroRNAs: biogenesis and molecular functions. Brain Pathol. 2008;18:113–21.

    Article  CAS  PubMed  Google Scholar 

  • Louis DN, Ohgaki H, Wiestler OD, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114:97–109.

    Article  PubMed  Google Scholar 

  • Lu XM, Zhao P, Zhang CZ, et al. Analysis of miR-221 and p27 expression in human gliomas. Mol Med Rep. 2009;2:651–6.

    CAS  Google Scholar 

  • Malecova B, Morris KV. Transcriptional gene silencing through epigenetic changes mediated by non-coding RNAs. Curr Opin Mol Ther. 2010;12:214–22.

    CAS  PubMed  Google Scholar 

  • Malzkorn B, Wolter M, Liesenberg F, et al. Identification and functional characterization of microRNAs involved in the malignant progression of gliomas. Brain Pathol. 2010;20:539–50.

    Article  CAS  PubMed  Google Scholar 

  • Mathupala SP, Guthikonda M, Sloan AE. RNAi based approaches to the treatment of malignant glioma. Technol Cancer Res Treat. 2006;5:261–9.

    CAS  PubMed  Google Scholar 

  • Mathupala SP, Mittal S, Guthikonda M, et al. MicroRNA and brain tumors: a cause and a cure? DNA Cell Biol. 2007;26:301–10.

    Article  CAS  PubMed  Google Scholar 

  • Meltzer PS. Cancer genomics: small RNAs with big impacts. Nature. 2005;435:745–6.

    Article  CAS  PubMed  Google Scholar 

  • Moazed D. Small RNAs in transcriptional gene silencing and genome defence. Nature. 2009;457:413–20.

    Article  CAS  PubMed  Google Scholar 

  • Myslinski E, Ame JC, Krol A, et al. An unusually compact external promoter for RNA polymerase III transcription of the human H1RNA gene. Nucleic Acids Res. 2001;29:2502–9.

    Article  CAS  PubMed  Google Scholar 

  • Napoli C, Lemieux C, Jorgensen R. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell. 1990;2:279–89.

    Article  CAS  PubMed  Google Scholar 

  • Nelson P, Kiriakidou M, Sharma A, et al. The microRNA world: small is mighty. Trends Biochem Sci. 2003;28:534–40.

    Article  CAS  PubMed  Google Scholar 

  • Okamura K, Lai EC. Endogenous small interfering RNAs in animals. Nat Rev Mol Cell Biol. 2008;9:673–8.

    Article  CAS  PubMed  Google Scholar 

  • Pardridge WM. Intravenous, non-viral RNAi gene therapy of brain cancer. Expert Opin Biol Ther. 2004;4:1103–13.

    Article  CAS  PubMed  Google Scholar 

  • Pardridge WM. shRNA and siRNA delivery to the brain. Adv Drug Deliv Rev. 2007;59:141–52.

    Article  CAS  PubMed  Google Scholar 

  • Pillai RS. MicroRNA function: multiple mechanisms for a tiny RNA? RNA. 2005;11:1753–61.

    Article  CAS  PubMed  Google Scholar 

  • Pirollo KF, Chang EH. Targeted delivery of small interfering RNA: approaching effective cancer therapies. Cancer Res. 2008;68:1247–50.

    Article  CAS  PubMed  Google Scholar 

  • Preall JB, He Z, Gorra JM, et al. Short interfering RNA strand selection is independent of dsRNA processing polarity during RNAi in Drosophila. Curr Biol. 2006;16:530–5.

    Article  CAS  PubMed  Google Scholar 

  • Pu PY, Kang CS, Zhang ZY, et al. Downregulation of PIK3CB by siRNA suppresses malignant glioma cell growth in vitro and in vivo. Technol Cancer Res. 2006;5:271–80.

    CAS  Google Scholar 

  • Pu P, Zhang Z, Kang C, et al. Downregulation of Wnt2 and beta-catenin by siRNA suppresses malignant glioma cell growth. Cancer Gene Ther. 2009;16:351–61.

    Article  CAS  PubMed  Google Scholar 

  • Reynolds A, Leake D, Boese Q, et al. Rational siRNA design for RNA interference. Nat Biotechnol. 2004;22:326–30.

    Article  CAS  PubMed  Google Scholar 

  • Rolle K, Nowak S, Wyszko E, et al. Promising human brain tumors therapy with interference RNA intervention (iRNAi). Cancer Biol Ther. 2010;9:396–406.

    PubMed  Google Scholar 

  • Rose SD, Kim DH, Amarzguioui M, et al. Functional polarity is introduced by Dicer processing of short substrate RNAs. Nucleic Acids Res. 2005;33:4140–56.

    Article  CAS  PubMed  Google Scholar 

  • Sasayama T, Nishihara M, Kondoh T, et al. MicroRNA-10b is overexpressed in malignant glioma and associated with tumor invasive factors, uPAR and RhoC. Int J Cancer. 2009;125:1407–13.

    Article  CAS  PubMed  Google Scholar 

  • Saydam O, Glauser DL, Heid I, et al. Herpes simplex virus 1 amplicon vector-mediated siRNA targeting epidermal growth factor receptor inhibits growth of human glioma cells in vivo. Mol Ther. 2005;12:803–12.

    Article  CAS  PubMed  Google Scholar 

  • Seitz H. Redefining microRNA targets. Curr Biol. 2009;19:870–3.

    Article  CAS  PubMed  Google Scholar 

  • Seno T, Harada H, Kohno S, et al. Downregulation of SPARE expression inhibits cell migration and invasion in malignant gliomas. Int J Oncol. 2009;34:707–15.

    Article  CAS  PubMed  Google Scholar 

  • Silva JM, Li MZ, Chang K, et al. Second-generation shRNA libraries covering the mouse and human genomes. Nat Genet. 2005;37:1281–8.

    CAS  PubMed  Google Scholar 

  • Siolas D, Lerner C, Burchard J, et al. Synthetic shRNAs as potent RNAi triggers. Nat Biotechnol. 2005;23:227–31.

    Article  CAS  PubMed  Google Scholar 

  • Taft RJ, Glazov EA, Cloonan N, et al. Tiny RNAs associated with transcription start sites in animals. Nat Genet. 2009;41:572–8.

    Article  CAS  PubMed  Google Scholar 

  • Takenaga K, Nygren J, Zelenina M, et al. Modified expression of Mts1/S100A4 protein in C6 glioma cells or surrounding astrocytes affects migration of tumor cells in vitro and in vivo. Neurobiol Dis. 2007;25:455–63.

    Article  CAS  PubMed  Google Scholar 

  • Uchida H, Tanaka T, Sasaki K, et al. Adenovirus-mediated transfer of siRNA against survivin induced apoptosis and attenuated tumor cell growth in vitro and in vivo. Mol Ther. 2004;10:162–71.

    Article  CAS  PubMed  Google Scholar 

  • Ulbricht U, Eckerich C, Fillbrandt R, et al. RNA interference targeting protein tyrosine phosphatase zeta/receptor-type protein tyrosine phosphatase beta suppresses glioblastoma growth in vitro and in vivo. J Neurochem. 2006;98:1497–506.

    Article  CAS  PubMed  Google Scholar 

  • Verdel A, Vavasseur A, Le Gorrec M, et al. Common themes in siRNA-mediated epigenetic silencing pathways. Int J Dev Biol. 2009;53:245–57.

    Article  CAS  PubMed  Google Scholar 

  • Wang XL, Xu RZ, Wu XM, et al. Targeted systemic delivery of a therapeutic siRNA with a multifunctional carrier controls tumor proliferation in mice. Mol Pharmaceut. 2009;6:738–46.

    Article  CAS  Google Scholar 

  • Watanabe T, Totoki Y, Toyoda A, et al. Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature. 2008;453:539–43.

    Article  CAS  PubMed  Google Scholar 

  • Wyszko E, Rolle K, Nowak S, et al. A multivariate analysis of patients with brain tumors treated with atn-RNA. Acta Pol Pharm. 2008;65:677–84.

    PubMed  Google Scholar 

  • Xia CF, Zhang Y, Boado RJ, et al. Intravenous siRNA of brain cancer with receptor targeting and avidin-biotin technology. Pharm Res. 2007;24:2309–16.

    Article  CAS  PubMed  Google Scholar 

  • Xie FY, Woodle MC, Lu PY. Harnessing in vivo siRNA delivery for drug discovery and therapeutic development. Drug Discov Today. 2006;11:67–73.

    Article  CAS  PubMed  Google Scholar 

  • Xu P, Qiu MZ, Zhang ZY, et al. The oncogenic roles of Notch1 in astrocytic gliomas in vitro and in vivo. J Neurooncol. 2010;97:41–51.

    Article  CAS  PubMed  Google Scholar 

  • Zhang LY, Alizadeh D, Van Handel M, et al. Stat3 Inhibition Activates Tumor Macrophages and Abrogates Glioma Growth in Mice. Glia. 2009b;57:1458–67.

    Article  PubMed  Google Scholar 

  • Zhang BB, Gu F, She CH, et al. Reduction of Akt2 inhibits migration and invasion of glioma cells. Int J Cancer. 2009a;125:585–95.

    Article  CAS  PubMed  Google Scholar 

  • Zhang JX, Han L, Ge YL, et al. MiR-221/222 promote malignant progression of glioma through activation of the Akt pathway. Int J Oncol. 2010;36:913–20.

    CAS  PubMed  Google Scholar 

  • Zhang Y, Zhang YF, Bryant J, et al. Intravenous RNA interference gene therapy targeting the human epidermal growth factor receptor prolongs survival in intracranial brain cancer. Clin Cancer Res. 2004;10:3667–77.

    Article  CAS  PubMed  Google Scholar 

  • Zhao P, Wang C, Fu Z, et al. Lentiviral vector mediated siRNA knock-down of hTERT results in diminished capacity in invasiveness and in vivo growth of human glioma cells in a telomere length-independent manner. Int J Oncol. 2007;31:361–8.

    CAS  PubMed  Google Scholar 

  • Zhou X, Ren Y, Moore L, et al. Downregulation of miR-21 inhibits EGFR pathway and suppresses the growth of human glioblastoma cells independent of PTEN status. Lab Invest. 2010;90:144–55.

    Article  CAS  PubMed  Google Scholar 

  • Zukiel R, Nowak S, Wyszko E, et al. Suppression of human brain tumor with interference RNA specific for tenascin-C. Cancer Biol Ther. 2006;5:1002–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Research support for S.P. Mathupala was provided by a grant from the National Cancer Institute/National Institute of Health (CA 116257), the Fund for Medical Research and Education (FMRE), Wayne State University, and a gift from the Marvin E. Klein, M.D., Charitable Trust. A.E. Sloan is supported by grants from the National Cancer Institute/National Institute of Health (KO8 101954) and the Case Western Reserve University School of Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saroj P. Mathupala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Netherlands

About this chapter

Cite this chapter

Mathupala, S.P., Mittal, S., Guthikonda, M., Sloan, A.E. (2011). RNAi-based Approaches to the Treatment of Brain Tumors. In: Cho, W. (eds) MicroRNAs in Cancer Translational Research. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0298-1_22

Download citation

Publish with us

Policies and ethics