Skip to main content

MicroRNAs in Cancer Invasion and Metastasis

  • Chapter
  • First Online:
MicroRNAs in Cancer Translational Research

Abstract

The field of cancer research has received invaluable gifts over the last few decades through novel innovations in molecular understanding and drug development. One area that is currently receiving much attention is that of microRNAs (miRNAs). The miRNAs are small, non-coding molecules that inhibit gene expression post-transcriptionally, and emerging evidence suggests that miRNAs are involved in cell growth, differentiation, and apoptosis. These developments could serve as the catalyst for further research focusing on finding a possible molecular link between miRNAs and cancer. This revolutionary research in the field of cancer has shown great promise in understanding the regulatory role of miRNAs in the development and progression of cancer, emphasizing its biochemical and pathological implications, and in particular, its significant role in cancer invasion and metastasis. For example, it has now been widely accepted that certain miRNAs are oncogenic while others act as tumor suppressors. Additionally, studies have shown that miRNAs can be used to alter sensitivity of drug-resistant tumor cells in order to improve the effects of conventional therapeutics. Furthermore, natural agents have been shown to alter miRNA expression, leading to possible inhibition of cancer cell growth and induction of apoptosis, which may contribute to the inhibition of tumor cell migration, invasion, and metastases. Therefore, selective up- and down-regulation of miRNAs holds a great promise for cancer therapy especially for those patients with invasive and metastatic disease. In this chapter, we will summarize the state of our knowledge regarding the role of miRNAs in cancer invasion and metastasis, and will also provide some information on how miRNAs could be regulated for therapeutic interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali S, Ahmad A, Banerjee S, et al. Gemcitabine sensitivity can be induced in pancreatic cancer cells through modulation of miR-200 and miR-21 expression by curcumin or its analogue CDF. Cancer Res. 2010;70:3606–17.

    Article  CAS  PubMed  Google Scholar 

  • Asangani IA, Rasheed SA, Nikolova DA, et al. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene. 2008;27:2128–36.

    Article  CAS  PubMed  Google Scholar 

  • Baranwal S, Alahari SK. MiRNA control of tumor cell invasion and metastasis. Int J Cancer. 2010;126:1283–90.

    CAS  PubMed  Google Scholar 

  • Barh D, Malhotra R, Ravi B, et al. MicroRNA let-7: an emerging next-generation cancer therapeutic. Curr Oncol. 2010;17:70–80.

    Article  CAS  PubMed  Google Scholar 

  • Bhaumik D, Scott GK, Schokrpur S, et al. Expression of microRNA-146 suppresses NF-kappaB activity with reduction of metastatic potential in breast cancer cells. Oncogene. 2008;27:5643–7.

    Article  CAS  PubMed  Google Scholar 

  • Bonauer A, Carmona G, Iwasaki M, et al. MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science. 2009;324:1710–3.

    Article  CAS  PubMed  Google Scholar 

  • Boyerinas B, Park SM, Hau A, et al. The role of let-7 in cell differentiation and cancer. Endocr Relat Cancer. 2010;17:F19–F36.

    Article  CAS  PubMed  Google Scholar 

  • Buysschaert I, Schmidt T, Roncal C, et al. Genetics, epigenetics and pharmaco-(epi)genomics in angiogenesis. J Cell Mol Med. 2008;12:2533–51.

    Article  CAS  PubMed  Google Scholar 

  • Cao Q, Yu J, Dhanasekaran SM, et al. Repression of E-cadherin by the polycomb group protein EZH2 in cancer. Oncogene. 2008;27:7274–84.

    Article  CAS  PubMed  Google Scholar 

  • Cha ST, Chen PS, Johansson G, et al. MicroRNA-519c suppresses hypoxia-inducible factor-1alpha expression and tumor angiogenesis. Cancer Res. 2010;70:2675–85.

    Article  CAS  PubMed  Google Scholar 

  • Chang KW, Liu CJ, Chu TH, et al. Association between high miR-211 microRNA expression and the poor prognosis of oral carcinoma. J Dent Res. 2008;87:1063–8.

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Gorski DH. Regulation of angiogenesis through a microRNA (miR-130a) that down-regulates antiangiogenic homeobox genes GAX and HOXA5. Blood. 2008;111:1217–26.

    Article  CAS  PubMed  Google Scholar 

  • Cho WC. Updates in cancer research: insights from the AACR 100th Annual Meeting. Expert Rev Mol Diagn. 2009;9:411–6.

    Article  PubMed  Google Scholar 

  • Cho WC. MicroRNAs in cancer – from research to therapy. Biochim Biophys Acta. 2010a;1805:209–17.

    CAS  PubMed  Google Scholar 

  • Cho WC. MicroRNAs: potential biomarkers for cancer diagnosis, prognosis and targets for therapy. Int J Biochem Cell Biol. 2010b;42:1273–81.

    Article  CAS  PubMed  Google Scholar 

  • Choi SH, Takahashi K, Eto H, et al. CD44 s expression in human colon carcinomas influences growth of liver metastases. Int J Cancer. 2000;85:523–6.

    Article  CAS  PubMed  Google Scholar 

  • Chow TF, Mankaruos M, Scorilas A, et al. The miR-17-92 cluster is over expressed in and has an oncogenic effect on renal cell carcinoma. J Urol. 2010;183:743–51.

    Article  CAS  PubMed  Google Scholar 

  • Cloonan N, Brown MK, Steptoe AL, et al. The miR-17-5p microRNA is a key regulator of the G1/S phase cell cycle transition. Genome Biol. 2008;9:R127.

    Google Scholar 

  • Connolly EC, Van DK, Rogler LE, et al. Overexpression of miR-21 promotes an in vitro metastatic phenotype by targeting the tumor suppressor RHOB. Mol Cancer Res. 2010;8:691–700.

    Article  CAS  PubMed  Google Scholar 

  • Coulouarn C, Factor VM, Andersen JB, et al. Loss of miR-122 expression in liver cancer correlates with suppression of the hepatic phenotype and gain of metastatic properties. Oncogene. 2009;28:3526–36.

    Article  CAS  PubMed  Google Scholar 

  • De PM, Naldini L. Antagonizing metastasis. Nat Biotechnol. 2010;28:331–2.

    Article  Google Scholar 

  • Di LG, Croce CM. Roles of small RNAs in tumor formation. Trends Mol Med. 2010;16:257–67.

    Article  Google Scholar 

  • Doebele C, Bonauer A, Fischer A, et al. Members of the microRNA-17-92 cluster exhibit a cell intrinsic anti-angiogenic function in endothelial cells. Blood. 2010;115:4944–50.

    Article  CAS  PubMed  Google Scholar 

  • Fish JE, Srivastava D. MicroRNAs: opening a new vein in angiogenesis research. Sci Signal. 2009;2:e1.

    Google Scholar 

  • Fish JE, Santoro MM, Morton SU, et al. MiR-126 regulates angiogenic signaling and vascular integrity. Dev Cell. 2008;15:272–84.

    Article  CAS  PubMed  Google Scholar 

  • Friedl P. Prespecification and plasticity: shifting mechanisms of cell migration. Curr Opin Cell Biol. 2004;16:14–23.

    Article  CAS  PubMed  Google Scholar 

  • Gao AC, Lou W, Dong JT, et al. CD44 is a metastasis suppressor gene for prostatic cancer located on human chromosome 11p13. Cancer Res. 1997;57:846–9.

    CAS  PubMed  Google Scholar 

  • Gregory PA, Bert AG, Paterson EL, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol. 2008a;10:593–601.

    Article  CAS  PubMed  Google Scholar 

  • Gregory PA, Bracken CP, Bert AG, et al. MicroRNAs as regulators of epithelial-mesenchymal transition. Cell Cycle. 2008b;7:3112–8.

    Article  CAS  PubMed  Google Scholar 

  • Hao-Xiang T, Qian W, Lian-Zhou C, et al. MicroRNA-9 reduces cell invasion and E-cadherin secretion in SK-Hep-1 cell. Med Oncol. 2010;27:654–60.

    Article  Google Scholar 

  • He XY, Chen JX, Zhang Z, et al. The let-7a microRNA protects from growth of lung carcinoma by suppression of k-Ras and c-Myc in nude mice. J Cancer Res Clin Oncol. 2010;136:1023–8.

    Article  CAS  PubMed  Google Scholar 

  • Hiyoshi Y, Kamohara H, Karashima R, et al. MicroRNA-21 regulates the proliferation and invasion in esophageal squamous cell carcinoma. Clin Cancer Res. 2009;15:1915–22.

    Article  CAS  PubMed  Google Scholar 

  • Hossain A, Kuo MT, Saunders GF, Mi R-. 17-5p regulates breast cancer cell proliferation by inhibiting translation of AIB1 mRNA. Mol Cell Biol. 2006;26:8191–201.

    Article  CAS  PubMed  Google Scholar 

  • Huang Q, Gumireddy K, Schrier M, et al. The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat Cell Biol. 2008;10:202–10.

    Article  CAS  PubMed  Google Scholar 

  • Hurst DR, Edmonds MD, Scott GK, et al. Breast cancer metastasis suppressor 1 up-regulates miR-146, which suppresses breast cancer metastasis. Cancer Res. 2009;69:1279–83.

    Article  CAS  PubMed  Google Scholar 

  • Iorio MV, Ferracin M, Liu CG, et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 2005;65:7065–70.

    Article  CAS  PubMed  Google Scholar 

  • Iwatsuki M, Mimori K, Yokobori T, et al. Epithelial-mesenchymal transition in cancer development and its clinical significance. Cancer Sci. 2010;101:293–9.

    Article  CAS  PubMed  Google Scholar 

  • Jakymiw A, Patel RS, Deming N, et al. Overexpression of dicer as a result of reduced let-7 MicroRNA levels contributes to increased cell proliferation of oral cancer cells. Genes Chromosomes Cancer. 2010;49:549–59.

    Article  CAS  PubMed  Google Scholar 

  • Jiang L, Liu X, Kolokythas A, et al. Downregulation of the Rho GTPase signaling pathway is involved in the microRNA-138 mediated inhibition of cell migration and invasion in tongue squamous cell carcinoma. Int J Cancer. 2010;127:505–12.

    Article  CAS  PubMed  Google Scholar 

  • Kong W, Yang H, He L, et al. MicroRNA-155 is regulated by the transforming growth factor beta/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA. Mol Cell Biol. 2008;28:6773–84.

    Article  CAS  PubMed  Google Scholar 

  • Kuehbacher A, Urbich C, Dimmeler S. Targeting microRNA expression to regulate angiogenesis. Trends Pharmacol Sci. 2008;29:12–5.

    Article  CAS  PubMed  Google Scholar 

  • Laios A, O’Toole S, Flavin R, et al. Potential role of miR-9 and miR-223 in recurrent ovarian cancer. Mol Cancer. 2008;7:35.

    Google Scholar 

  • Lan FF, Wang H, Chen YC, et al. Hsa-let-7 g inhibits proliferation of hepatocellular carcinoma cells by down-regulation of c-Myc and up-regulation of p16(INK4A). Int J Cancer. 2011;128:319–31.

    Article  CAS  PubMed  Google Scholar 

  • Lawler S, Chiocca EA. Emerging functions of microRNAs in glioblastoma. J Neurooncol. 2009;92:297–306.

    Article  CAS  PubMed  Google Scholar 

  • Lee YS, Dutta A. MicroRNAs in cancer. Annu Rev Pathol. 2009;4:199–227.

    Article  CAS  PubMed  Google Scholar 

  • Li N, Fu H, Tie Y, et al. MiR-34a inhibits migration and invasion by down-regulation of c-Met expression in human hepatocellular carcinoma cells. Cancer Lett. 2009a;275:44–53.

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Kong D, Wang Z, et al. Regulation of microRNAs by natural agents: an emerging field in chemoprevention and chemotherapy research. Pharm Res. 2010a;27:1027–41.

    Article  PubMed  Google Scholar 

  • Li T, Li D, Sha J, et al. MicroRNA-21 directly targets MARCKS and promotes apoptosis resistance and invasion in prostate cancer cells. Biochem Biophys Res Commun. 2009b;383:280–5.

    Article  CAS  PubMed  Google Scholar 

  • Li F, Tiede B, Massague J, et al. Beyond tumorigenesis: cancer stem cells in metastasis. Cell Res. 2007;17:3–14.

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Vandenboom TG, Kong D, et al. Up-regulation of miR-200 and let-7 by natural agents leads to the reversal of epithelial-to-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells. Cancer Res. 2009c;69:6704–12.

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Vandenboom TG, Wang Z, et al. MiR-146a suppresses invasion of pancreatic cancer cells. Cancer Res. 2010b;70:1486–95.

    Article  CAS  PubMed  Google Scholar 

  • Lin SL, Chiang A, Chang D, et al. Loss of miR-146a function in hormone-refractory prostate cancer. RNA. 2008;14:417–24.

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Jiang L, Wang A, et al. MicroRNA-138 suppresses invasion and promotes apoptosis in head and neck squamous cell carcinoma cell lines. Cancer Lett. 2009b;286:217–22.

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Peng XC, Zheng XL, et al. MiR-126 restoration down-regulate VEGF and inhibit the growth of lung cancer cell lines in vitro and in vivo. Lung Cancer. 2009a;66:169–75.

    Article  PubMed  Google Scholar 

  • Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature. 2007;449:682–8.

    Article  CAS  PubMed  Google Scholar 

  • Ma L, Weinberg RA. Micromanagers of malignancy: role of microRNAs in regulating metastasis. Trends Genet. 2008;24:448–56.

    Article  CAS  PubMed  Google Scholar 

  • Ma L, Young J, Prabhala H, et al. MiR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol. 2010;12:247–56.

    CAS  PubMed  Google Scholar 

  • McConkey DJ, Choi W, Marquis L, et al. Role of epithelial-to-mesenchymal transition (EMT) in drug sensitivity and metastasis in bladder cancer. Cancer Metastasis Rev. 2009;28:335–44.

    Article  CAS  PubMed  Google Scholar 

  • Mu G, Liu H, Zhou F, et al. Correlation of overexpression of HMGA1 and HMGA2 with poor tumor differentiation, invasion, and proliferation associated with let-7 down-regulation in retinoblastomas. Hum Pathol. 2010;41:493–502.

    Article  CAS  PubMed  Google Scholar 

  • Nass D, Rosenwald S, Meiri E, et al. MiR-92b and miR-9/9* are specifically expressed in brain primary tumors and can be used to differentiate primary from metastatic brain tumors. Brain Pathol. 2009;19:375–83.

    Article  CAS  PubMed  Google Scholar 

  • Nasser MW, Datta J, Nuovo G, et al. Down-regulation of micro-RNA-1 (miR-1) in lung cancer. Suppression of tumorigenic property of lung cancer cells and their sensitization to doxorubicin-induced apoptosis by miR-1. J Biol Chem. 2008;283:33394–405.

    Article  CAS  PubMed  Google Scholar 

  • Negrini M, Calin GA. Breast cancer metastasis: a microRNA story. Breast Cancer Res. 2008;10:203.

    Google Scholar 

  • Nicoloso MS, Spizzo R, Shimizu M, et al. MicroRNAs–the micro steering wheel of tumour metastases. Nat Rev Cancer. 2009;9:293–302.

    Article  CAS  PubMed  Google Scholar 

  • Pang RT, Leung CO, Ye TM, et al. MicroRNA-34a suppresses invasion through down-regulation of Notch1 and Jagged1 in cervical carcinoma and choriocarcinoma cells. Carcinogenesis. 2010;31:1037–44.

    Article  CAS  PubMed  Google Scholar 

  • Park SY, Lee JH, Ha M, et al. MiR-29 miRNAs activate p53 by targeting p85 alpha and CDC42. Nat Struct Mol Biol. 2009;16:23–9.

    Article  CAS  PubMed  Google Scholar 

  • Pass HI, Goparaju C, Ivanov S, et al. Hsa-miR-29c* is linked to the prognosis of malignant pleural mesothelioma. Cancer Res. 2010;70:1916–24.

    Article  CAS  PubMed  Google Scholar 

  • Qian B, Katsaros D, Lu L, et al. High miR-21 expression in breast cancer associated with poor disease-free survival in early stage disease and high TGF-beta1. Breast Cancer Res Treat. 2009;117:131–40.

    Article  CAS  PubMed  Google Scholar 

  • Sachdeva M, Mo YY. MicroRNA-145 suppresses cell invasion and metastasis by directly targeting mucin 1. Cancer Res. 2010;70:378–87.

    Article  CAS  PubMed  Google Scholar 

  • Santarpia L, Nicoloso M, Calin GA. MicroRNAs: a complex regulatory network drives the acquisition of malignant cell phenotype. Endocr Relat Cancer. 2010;17:F51–F75.

    Article  CAS  PubMed  Google Scholar 

  • Sarkar FH, Li Y, Wang Z, et al. Implication of microRNAs in drug resistance for designing novel cancer therapy. Drug Resist Updat. 2010;13:57–66.

    Article  CAS  PubMed  Google Scholar 

  • Schmittgen TD. MiR-31: a master regulator of metastasis? Future Oncol. 2010;6:17–20.

    Article  CAS  PubMed  Google Scholar 

  • Sengupta S, den Boon JA, Chen IH, et al. MicroRNA 29c is down-regulated in nasopharyngeal carcinomas, up-regulating mRNAs encoding extracellular matrix proteins. Proc Natl Acad Sci USA. 2008;105:5874–8.

    Article  CAS  PubMed  Google Scholar 

  • Shi M, Guo N. MicroRNA expression and its implications for the diagnosis and therapeutic strategies of breast cancer. Cancer Treat Rev. 2009;35:328–34.

    Article  CAS  PubMed  Google Scholar 

  • Sossey-Alaoui K, Bialkowska K, Plow EF. The miR200 family of microRNAs regulates WAVE3-dependent cancer cell invasion. J Biol Chem. 2009;284:33019–29.

    Article  CAS  PubMed  Google Scholar 

  • Su JL, Chen PB, Chen YH, et al. Downregulation of MicroRNA miR-520 h by E1A Contributes to Anticancer Activity. Cancer Res. 2010;70:5096–108.

    Article  CAS  PubMed  Google Scholar 

  • Suarez Y, Fernandez-Hernando C, Yu J, et al. Dicer-dependent endothelial microRNAs are necessary for postnatal angiogenesis. Proc Natl Acad Sci USA. 2008;105:14082–7.

    Article  CAS  PubMed  Google Scholar 

  • Suarez Y, Sessa WC. MicroRNAs as novel regulators of angiogenesis. Circ Res. 2009;104:442–54.

    Article  CAS  PubMed  Google Scholar 

  • Subramanian S, Thayanithy V, West RB, et al. Genome-wide transcriptome analyses reveal p53 inactivation mediated loss of miR-34a expression in malignant peripheral nerve sheath tumours. J Pathol. 2010;220:58–70.

    Article  CAS  PubMed  Google Scholar 

  • Takakura S, Mitsutake N, Nakashima M, et al. Oncogenic role of miR-17-92 cluster in anaplastic thyroid cancer cells. Cancer Sci. 2008;99:1147–54.

    Article  CAS  PubMed  Google Scholar 

  • Tavazoie SF, Alarcon C, Oskarsson T, et al. Endogenous human microRNAs that suppress breast cancer metastasis. Nature. 2008;451:147–52.

    Article  CAS  PubMed  Google Scholar 

  • Tian Y, Luo A, Cai Y, et al. MicroRNA-10b promotes migration and invasion through KLF4 in human esophageal cancer cell lines. J Biol Chem. 2010;285:7986–94.

    Article  CAS  PubMed  Google Scholar 

  • Tsai WC, Hsu PW, Lai TC, et al. MicroRNA-122, a tumor suppressor microRNA that regulates intrahepatic metastasis of hepatocellular carcinoma. Hepatology. 2009;49:1571–82.

    Article  CAS  PubMed  Google Scholar 

  • Urbich C, Kuehbacher A, Dimmeler S. Role of microRNAs in vascular diseases, inflammation, and angiogenesis. Cardiovasc Res. 2008;79:581–8.

    Article  CAS  PubMed  Google Scholar 

  • Valastyan S, Reinhardt F, Benaich N, et al. A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell. 2009;137:1032–46.

    Article  CAS  PubMed  Google Scholar 

  • Vandenboom TG, Li Y, Philip PA, et al. MicroRNA and cancer: tiny molecules with major implications. Curr Genomics. 2008;9:97–109.

    Article  CAS  Google Scholar 

  • Varambally S, Cao Q, Mani RS, et al. Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science. 2008;322:1695–9.

    Article  CAS  PubMed  Google Scholar 

  • Volinia S, Calin GA, Liu CG, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA. 2006;103:2257–61.

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Aurora AB, Johnson BA, et al. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell. 2008;15:261–71.

    Article  PubMed  Google Scholar 

  • Wang Z, Li Y, Kong D, et al. Cross-talk between miRNA and Notch signaling pathways in tumor development and progression. Cancer Lett. 2010;292:141–8.

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Olson EN. AngiomiRs–key regulators of angiogenesis. Curr Opin Genet Dev. 2009;19:205–11.

    Article  CAS  PubMed  Google Scholar 

  • Weiss FU, Marques IJ, Woltering JM, et al. Retinoic acid receptor antagonists inhibit miR-10a expression and block metastatic behavior of pancreatic cancer. Gastroenterology. 2009;137:2136–45.

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Zhu S, Mo YY. Suppression of cell growth and invasion by miR-205 in breast cancer. Cell Res. 2009;19:439–48.

    Article  CAS  PubMed  Google Scholar 

  • Wurdinger T, Tannous BA. Glioma angiogenesis: towards novel RNA therapeutics. Cell Adh Migr. 2009;3:230–5.

    Article  PubMed  Google Scholar 

  • Wurdinger T, Tannous BA, Saydam O, et al. MiR-296 regulates growth factor receptor overexpression in angiogenic endothelial cells. Cancer Cell. 2008;14:382–93.

    Article  CAS  PubMed  Google Scholar 

  • Xia H, Qi Y, Ng SS, et al. MicroRNA-146b inhibits glioma cell migration and invasion by targeting MMPs. Brain Res. 2009;1269:158–65.

    Article  CAS  PubMed  Google Scholar 

  • Yamakuchi M, Lotterman CD, Bao C, et al. P53-induced microRNA-107 inhibits HIF-1 and tumor angiogenesis. Proc Natl Acad Sci USA. 2010;107:6334–9.

    Article  CAS  PubMed  Google Scholar 

  • Yan D, Zhou X, Chen X, et al. MicroRNA-34a inhibits uveal melanoma cell proliferation and migration through downregulation of c-Met. Invest Ophthalmol Vis Sci. 2009;50:1559–65.

    Article  PubMed  Google Scholar 

  • Yang F, Yin Y, Wang F, et al. MiR-17-5p Promotes migration of human hepatocellular carcinoma cells through the p38 mitogen-activated protein kinase-heat shock protein 27 pathway. Hepatology. 2010;51:1614–23.

    Article  CAS  PubMed  Google Scholar 

  • Yu Z, Wang C, Wang M, et al. A cyclin D1/microRNA 17/20 regulatory feedback loop in control of breast cancer cell proliferation. J Cell Biol. 2008;182:509–17.

    Article  CAS  PubMed  Google Scholar 

  • Yu Z, Willmarth NE, Zhou J, et al. MicroRNA 17/20 inhibits cellular invasion and tumor metastasis in breast cancer by heterotypic signaling. Proc Natl Acad Sci USA. 2010;107:8231–6.

    Article  CAS  PubMed  Google Scholar 

  • Zhao T, Li J, Chen AF. MicroRNA-34a induces endothelial progenitor cell senescence and impedes its angiogenesis via suppressing silent information regulator 1. Am J Physiol Endocrinol Metab. 2010;299:E110–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fazlul H. Sarkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Netherlands

About this chapter

Cite this chapter

Ali, A.S., Ali, S., Ahmad, A., Philip, P.A., Sarkar, F.H. (2011). MicroRNAs in Cancer Invasion and Metastasis. In: Cho, W. (eds) MicroRNAs in Cancer Translational Research. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0298-1_17

Download citation

Publish with us

Policies and ethics