Skip to main content

MicroRNAs in Epithelial Ovarian Cancer

  • Chapter
  • First Online:
MicroRNAs in Cancer Translational Research

Abstract

Epithelial ovarian cancer is one of the most common gynecological cancers worldwide. Despite decades of researches, it remains a major cause of morbidity and mortality among women in the United States. However, progress has been made on understanding the cellular and molecular mechanisms for ovarian cancer. Frequent mutations in the p53/Rb tumor suppressor pathways and activation of oncogenic signaling pathways such as c-Myc, K-ras, and Akt greatly contribute to disease progression. Recently, microRNAs (miRNAs) have been demonstrated to be a novel class of regulators in cell proliferation, differentiation, and apoptosis. Functional studies revealed that miRNAs play an important role during tumorigenesis, cancer progression, and therapeutic response. Gene expression profiling studies found aberrant miRNA expressions in essentially all types of tumors studied. In this chapter, we will review recent researches on the role of miRNAs in ovarian cancer and discuss how these studies can improve our understanding of ovarian cancer pathogenesis. We also discuss the perspectives of miRNAs as diagnostic and prognostic tools in clinical practice, and as new avenues for therapeutic development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Asadollahi R, Hyde CA, Zhong XY. Epigenetics of ovarian cancer: From the lab to the clinic. Gynecol Oncol. 2010;18:81–7.

    Article  CAS  Google Scholar 

  • Auersperg N, Edelson MI, Mok SC, et al. The biology of ovarian cancer. Semin Oncol. 1998;25:281–304.

    CAS  PubMed  Google Scholar 

  • Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.

    Article  CAS  PubMed  Google Scholar 

  • Bast RC Jr, Klug TL, St John E, et al. A radioimmunoassay using a monoclonal antibody to monitor the course of epithelial ovarian cancer. N Engl J Med. 1983;309:883–7.

    Article  PubMed  Google Scholar 

  • Bendoraite A, Knouf EC, Garg KS, et al. Regulation of miR-200 family microRNAs and ZEB transcription factors in ovarian cancer: evidence supporting a mesothelial-to-epithelial transition. Gynecol Oncol. 2010;116:117–25.

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya R, Nicoloso M, Arvizo R, et al. MiR-15a and miR-16 control Bmi-1 expression in ovarian cancer. Cancer Res. 2009;69:9090–5.

    Article  CAS  PubMed  Google Scholar 

  • Borchert GM, Lanier W, Davidson BL. RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol. 2006;13:1097–101.

    Article  CAS  PubMed  Google Scholar 

  • Boren T, Xiong Y, Hakam A, et al. MicroRNAs and their target messenger RNAs associated with ovarian cancer response to chemotherapy. Gynecol Oncol. 2009;113:249–55.

    Article  CAS  PubMed  Google Scholar 

  • Bussing I, Slack FJ, Grosshans H. Let-7 microRNAs in development, stem cells and cancer. Trends Mol Med. 2008;14:400–9.

    Article  PubMed  CAS  Google Scholar 

  • Cai Y, Yu X, Hu S, et al. A brief review on the mechanisms of miRNA regulation. Genomics Proteomics Bioinformatics. 2009;7:147–54.

    Article  CAS  PubMed  Google Scholar 

  • Calin GA, Croce CM. MicroRNA-cancer connection: the beginning of a new tale. Cancer Res. 2006;66:7390–4.

    Article  CAS  PubMed  Google Scholar 

  • Calin GA, Dumitru CD, Shimizu M, et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA. 2002;99:15524–9.

    Article  CAS  PubMed  Google Scholar 

  • Calin GA, Ferracin M, Cimmino A, et al. A microRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med. 2005;353:1793–801.

    Article  CAS  PubMed  Google Scholar 

  • Calin GA, Sevignani C, Dumitru CD, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA. 2004;101:2999–3004.

    Article  CAS  PubMed  Google Scholar 

  • Carmell MA, Xuan Z, Zhang MQ, et al. The argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Genes Dev. 2002;16:2733–42.

    Article  CAS  PubMed  Google Scholar 

  • Carthew RW, Sontheimer EJ. Origins and mechanisms of miRNAs and siRNAs. Cell. 2009;136:642–55.

    Article  CAS  PubMed  Google Scholar 

  • Chan JA, Krichevsky AM, Kosik KS. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res. 2005;65:6029–33.

    Article  CAS  PubMed  Google Scholar 

  • Chang TC, Wentzel EA, Kent OA, et al. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell. 2007;26:745–52.

    Article  CAS  PubMed  Google Scholar 

  • Chang TC, Yu D, Lee YS, et al. Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet. 2008;40:43–50.

    Article  CAS  PubMed  Google Scholar 

  • Chen R, Alvero AB, Silasi DA, et al. Regulation of IKKbeta by miR-199a affects NF-kappaB activity in ovarian cancer cells. Oncogene. 2008;27:4712–23.

    Article  CAS  PubMed  Google Scholar 

  • Cho WC. MicroRNAs: potential biomarkers for cancer diagnosis, prognosis and targets for therapy. Int J Biochem Cell Biol. 2010a;42:1273–81.

    PubMed  Google Scholar 

  • Cho WC. MicroRNAs in cancer – from research to therapy. Biochim Biophys Acta. 2010b;1805:209–17.

    CAS  PubMed  Google Scholar 

  • Chung TK, Cheung TH, Huen NY, et al. Dysregulated microRNAs and their predicted targets associated with endometrioid endometrial adenocarcinoma in Hong Kong women. Int J Cancer. 2009;124:1358–65.

    Article  CAS  PubMed  Google Scholar 

  • Cimmino A, Calin GA, Fabbri M, et al. MiR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA. 2005;102:13944–9.

    Article  CAS  PubMed  Google Scholar 

  • Cochrane DR, Spoelstra NS, Howe EN, et al. MicroRNA-200c mitigates invasiveness and restores sensitivity to microtubule-targeting chemotherapeutic agents. Mol Cancer Ther. 2009;8:1055

    PubMed  Google Scholar 

  • Corney DC, Flesken-Nikitin A, Godwin AK, et al. MicroRNA-34b and microRNA-34c are targets of p53 and cooperate in control of cell proliferation and adhesion-independent growth. Cancer Res. 2007;67:8433–8.

    Article  CAS  PubMed  Google Scholar 

  • Corney DC, Hwang CI, Matoso A, et al. Frequent down-regulation of miR-34 family in human ovarian cancers. Clin Cancer Res. 2010;16:1119–28.

    Article  CAS  PubMed  Google Scholar 

  • Costinean S, Zanesi N, Pekarsky Y, et al. Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice. Proc Natl Acad Sci USA. 2006;103:7024–9.

    Article  CAS  PubMed  Google Scholar 

  • Creighton CJ, Fountain MD, Yu Z, et al. Molecular profiling uncovers a p53-associated role for microRNA-31 in inhibiting the proliferation of serous ovarian carcinomas and other cancers. Cancer Res. 2010;70:1906–15.

    Article  CAS  PubMed  Google Scholar 

  • Crum CP, Drapkin R, Miron A, et al. The distal fallopian tube: a new model for pelvic serous carcinogenesis. Curr Opin Obstet Gynecol. 2007;19:3–9.

    Article  PubMed  Google Scholar 

  • Dahiya N, Sherman-Baust CA, Wang TL, et al. MicroRNA expression and identification of putative miRNA targets in ovarian cancer. PLoS One. 2008;3:e2436.

    Google Scholar 

  • Dubeau L. The cell of origin of ovarian epithelial tumors and the ovarian surface epithelium dogma: does the emperor have no clothes? Gynecol Oncol. 1999;72:437–42.

    Article  CAS  PubMed  Google Scholar 

  • Dubeau L. The cell of origin of ovarian epithelial tumours. Lancet Oncol. 2008;9:1191–7.

    Article  CAS  PubMed  Google Scholar 

  • Eis PS, Tam W, Sun L, et al. Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc Natl Acad Sci USA. 2005;102:3627–32.

    Article  CAS  PubMed  Google Scholar 

  • Eitan R, Kushnir M, Lithwick-Yanai G, et al. Tumor microRNA expression patterns associated with resistance to platinum based chemotherapy and survival in ovarian cancer patients. Gynecol Oncol. 2009;114:253–9.

    Article  CAS  PubMed  Google Scholar 

  • Esquela-Kerscher A, Slack FJ. Oncomirs – microRNAs with a role in cancer. Nat Rev Cancer. 2006;6:259–69.

    Article  CAS  PubMed  Google Scholar 

  • Esquela-Kerscher A, Trang P, Wiggins JF, et al. The let-7 microRNA reduces tumor growth in mouse models of lung cancer. Cell Cycle. 2008;7:759–64.

    Article  CAS  PubMed  Google Scholar 

  • Fabbri M, Garzon R, Cimmino A, et al. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci USA. 2007;104:15805–10.

    Article  CAS  PubMed  Google Scholar 

  • Faggad A, Budczies J, Tchernitsa O, et al. Prognostic significance of Dicer expression in ovarian cancer-link to global microRNA changes and oestrogen receptor expression. J Pathol. 2010;220:382–91.

    CAS  PubMed  Google Scholar 

  • Fathalla MF. Incessant ovulation – a factor in ovarian neoplasia? Lancet. 1971;2:163.

    Google Scholar 

  • Flavin R, Smyth P, Barrett C, et al. MiR-29b expression is associated with disease-free survival in patients with ovarian serous carcinoma. Int J Gynecol Cancer. 2009;19:641–7.

    Article  PubMed  Google Scholar 

  • Flavin RJ, Smyth PC, Finn SP, et al. Altered eIF6 and Dicer expression is associated with clinicopathological features in ovarian serous carcinoma patients. Mod Pathol. 2008;21:676–84.

    Article  CAS  PubMed  Google Scholar 

  • Folkins AK, Jarboe EA, Saleemuddin A, et al. A candidate precursor to pelvic serous cancer (p53 signature) and its prevalence in ovaries and fallopian tubes from women with BRCA mutations. Gynecol Oncol. 2008;109:168–73.

    Article  CAS  PubMed  Google Scholar 

  • Folkins AK, Saleemuddin A, Garrett LA, et al. Epidemiologic correlates of ovarian cortical inclusion cysts (CICs) support a dual precursor pathway to pelvic epithelial cancer. Gynecol Oncol. 2009;115:108–11.

    Article  PubMed  Google Scholar 

  • Garzon R, Calin GA, Croce CM. MicroRNAs in cancer. Annu Rev Med. 2009;60:167–79.

    Article  CAS  PubMed  Google Scholar 

  • Garzon R, Volinia S, Liu CG, et al. MicroRNA signatures associated with cytogenetics and prognosis in acute myeloid leukemia. Blood. 2008;111:3183–9.

    Article  CAS  PubMed  Google Scholar 

  • Giannakakis A, Sandaltzopoulos R, Greshock J, et al. MiR-210 links hypoxia with cell cycle regulation and is deleted in human epithelial ovarian cancer. Cancer Biol Ther. 2008;7:255–64.

    Article  CAS  PubMed  Google Scholar 

  • Gilad S, Meiri E, Yogev Y, et al. Serum microRNAs are promising novel biomarkers. PLoS One. 2008;3:e3148.

    Google Scholar 

  • Gomez-Cabello D, Callejas S, Benguria A, et al. Regulation of the microRNA processor DGCR8 by the tumor suppressor ING1. Cancer Res. 2010;70:1866–74.

    Article  CAS  PubMed  Google Scholar 

  • Gott JM, Emeson RB. Functions and mechanisms of RNA editing. Annu Rev Genet. 2000;34:499–531.

    Article  CAS  PubMed  Google Scholar 

  • Griffiths-Jones S. MiRBase: microRNA sequences and annotation. Curr Protoc Bioinformatics. 2010;Chapter 12:Unit 12.9.1–12.9.10.

    PubMed  Google Scholar 

  • Guo LM, Pu Y, Han Z, et al. MicroRNA-9 inhibits ovarian cancer cell growth through regulation of NF-kappaB1. FEBS J. 2009;276:5537–46.

    Article  CAS  PubMed  Google Scholar 

  • Halazonetis TD, Gorgoulis VG, Bartek J. An oncogene-induced DNA damage model for cancer development. Science. 2008;319:1352–5.

    Article  CAS  PubMed  Google Scholar 

  • Han L, Witmer PD, Casey E, et al. DNA methylation regulates microRNA expression. Cancer Biol Ther. 2007;6:1284–8.

    Article  CAS  PubMed  Google Scholar 

  • Hawkins RE, Roberts K, Wiltshaw E, et al. The clinical correlates of serum CA125 in 169 patients with epithelial ovarian carcinoma. Br J Cancer. 1989;60:634–7.

    Article  CAS  PubMed  Google Scholar 

  • He L, He X, Lim LP, et al. A microRNA component of the p53 tumour suppressor network. Nature. 2007;447:1130–4.

    Article  CAS  PubMed  Google Scholar 

  • He L, Thomson JM, Hemann MT, et al. A microRNA polycistron as a potential human oncogene. Nature. 2005;435:828–33.

    Article  CAS  PubMed  Google Scholar 

  • Heo I, Joo C, Cho J, et al. Lin28 mediates the terminal uridylation of let-7 precursor microRNA. Mol Cell. 2008;32:276–84.

    Article  CAS  PubMed  Google Scholar 

  • Herbst AL. The epidemiology of ovarian carcinoma and the current status of tumor markers to detect disease. Am J Obstet Gynecol. 1994;170:1099–107.

    CAS  PubMed  Google Scholar 

  • Hossain A, Kuo MT, Saunders GF. Mir-17-5p regulates breast cancer cell proliferation by inhibiting translation of AIB1 mRNA. Mol Cell Biol. 2006;26:8191–201.

    Article  CAS  PubMed  Google Scholar 

  • Hu X, Macdonald DM, Huettner PC, et al. A miR-200 microRNA cluster as prognostic marker in advanced ovarian cancer. Gynecol Oncol. 2009;114:457–64.

    Article  CAS  PubMed  Google Scholar 

  • Huang YW, Liu JC, Deatherage DE, et al. Epigenetic repression of microRNA-129-2 leads to over-expression of SOX4 oncogene in endometrial cancer. Cancer Res. 2009;69:9038–46.

    Article  CAS  PubMed  Google Scholar 

  • Iorio MV, Ferracin M, Liu CG, et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 2005;65:7065–70.

    Article  CAS  PubMed  Google Scholar 

  • Iorio MV, Visone R, Di Leva G, et al. MicroRNA signatures in human ovarian cancer. Cancer Res. 2007;67:8699–707.

    Article  CAS  PubMed  Google Scholar 

  • Jazdzewski K, Murray EL, Franssila K, et al. Common SNP in pre-miR-146a decreases mature miR expression and predisposes to papillary thyroid carcinoma. Proc Natl Acad Sci USA. 2008;105:7269–74.

    Article  CAS  PubMed  Google Scholar 

  • Jemal A, Siegel R, Xu J, et al. Cancer statistics, 2010. CA Cancer J Clin. 2010;60:277–300.

    PubMed  Google Scholar 

  • Johnson SM, Grosshans H, Shingara J, et al. RAS is regulated by the let-7 microRNA family. Cell. 2005;120:635–47.

    Article  CAS  PubMed  Google Scholar 

  • Kamiya N, Mizuno K, Kawai M, et al. Simultaneous measurement of CA 125, CA 19-9, tissue polypeptide antigen, and immunosuppressive acidic protein to predict recurrence of ovarian cancer. Obstet Gynecol. 1990;76:417–21.

    CAS  PubMed  Google Scholar 

  • Karube Y, Tanaka H, Osada H, et al. Reduced expression of Dicer associated with poor prognosis in lung cancer patients. Cancer Sci. 2005;96:111–5.

    Article  CAS  PubMed  Google Scholar 

  • Kawahara Y, Nishikura K. Regulation of the miRNA function by RNA editing. Tanpakushitsu Kakusan Koso. 2009;54:1133–40.

    CAS  PubMed  Google Scholar 

  • Kim VN, Han J, Siomi MC. Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol. 2009;10:126–39.

    Article  CAS  PubMed  Google Scholar 

  • Kota J, Chivukula RR, O’Donnell KA, et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell. 2009;137:1005–17.

    Article  CAS  PubMed  Google Scholar 

  • Kumar MS, Erkeland SJ, Pester RE, et al. Suppression of non-small cell lung tumor development by the let-7 microRNA family. Proc Natl Acad Sci USA. 2008;105:3903–8.

    Article  CAS  PubMed  Google Scholar 

  • Kuo KT, Guan B, Feng Y, et al. Analysis of DNA copy number alterations in ovarian serous tumors identifies new molecular genetic changes in low-grade and high-grade carcinomas. Cancer Res. 2009;69:4036–42.

    Article  CAS  PubMed  Google Scholar 

  • Laios A, O’Toole S, Flavin R, et al. Potential role of miR-9 and miR-223 in recurrent ovarian cancer. Mol Cancer. 2008;7:35.

    Google Scholar 

  • Lawrie CH, Gal S, Dunlop HM, et al. Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol. 2008;141:672–5.

    Article  PubMed  Google Scholar 

  • Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75:843–54.

    Article  CAS  PubMed  Google Scholar 

  • Lee Y, Miron A, Drapkin R, et al. A candidate precursor to serous carcinoma that originates in the distal fallopian tube. J Pathol. 2007;211:26–35.

    Article  CAS  PubMed  Google Scholar 

  • Lee CH, Subramanian S, Beck AH, et al. MicroRNA profiling of BRCA1/2 mutation-carrying and non-mutation-carrying high-grade serous carcinomas of ovary. PLoS One. 2009;4:e7314.

    Google Scholar 

  • Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120:15–20.

    Article  CAS  PubMed  Google Scholar 

  • Li C, Feng Y, Coukos G, et al. Therapeutic microRNA strategies in human cancer. AAPS J. 2009;11:747–57.

    Article  CAS  PubMed  Google Scholar 

  • Li SD, Zhang JR, Wang YQ, et al. The role of microRNAs in ovarian cancer initiation and progression. J Cell Mol Med. 2010;14:2240–9.

    Google Scholar 

  • Lodes MJ, Caraballo M, Suciu D, et al. Detection of cancer with serum miRNAs on an oligonucleotide microarray. PLoS One. 2009;4:e6229.

    Google Scholar 

  • Lou YH, Yang XS, Wang FL, et al. Expression of microRNA-21 in ovarian epithelial carcinoma and its clinical significance. Nan Fang Yi Ke Da Xue Xue Bao. 2010;30:608–10.

    CAS  PubMed  Google Scholar 

  • Lu J, Getz G, Miska EA, et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435:834–8.

    Article  CAS  PubMed  Google Scholar 

  • Lu L, Katsaros D, de la Longrais IA, et al. Hypermethylation of let-7a-3 in epithelial ovarian cancer is associated with low insulin-like growth factor-II expression and favorable prognosis. Cancer Res. 2007;67:10117–22.

    Article  CAS  PubMed  Google Scholar 

  • Mahajan A, Liu Z, Gellert L, et al. HMGA2: a biomarker significantly over-expressed in high-grade ovarian serous carcinoma. Mod Pathol. 2010;23:673–81.

    Article  CAS  PubMed  Google Scholar 

  • Melo SA, Ropero S, Moutinho C, et al. A TARBP2 mutation in human cancer impairs microRNA processing and DICER1 function. Nat Genet. 2009;41:365–70.

    Article  CAS  PubMed  Google Scholar 

  • Mendell JT. Miriad roles for the miR-17-92 cluster in development and disease. Cell. 2008;133:217–22.

    Article  CAS  PubMed  Google Scholar 

  • Merritt WM, Lin YG, Han LY, et al. Dicer, drosha, and outcomes in patients with ovarian cancer. N Engl J Med. 2008;359:2641–50.

    Article  CAS  PubMed  Google Scholar 

  • Mezzanzanica D, Bagnoli M, De Cecco L, et al. Role of microRNAs in ovarian cancer pathogenesis and potential clinical implications. Int J Biochem Cell Biol. 2010;42:1262–72.

    Article  CAS  PubMed  Google Scholar 

  • Mitchell PS, Parkin RK, Kroh EM, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA. 2008;105:10513–8.

    Article  CAS  PubMed  Google Scholar 

  • Moore RG, Brown AK, Miller MC, et al. The use of multiple novel tumor biomarkers for the detection of ovarian carcinoma in patients with a pelvic mass. Gynecol Oncol. 2008;108:402–8.

    Article  CAS  PubMed  Google Scholar 

  • Mott JL, Kobayashi S, Bronk SF, et al. Mir-29 regulates Mcl-1 protein expression and apoptosis. Oncogene. 2007;26:6133–40.

    Article  CAS  PubMed  Google Scholar 

  • Nagaraja AK, Creighton CJ, Yu Z, et al. A link between mir-100 and FRAP1/mTOR in clear cell ovarian cancer. Mol Endocrinol. 2010;24:447–63.

    Article  CAS  PubMed  Google Scholar 

  • Nam EJ, Yoon H, Kim SW, et al. MicroRNA expression profiles in serous ovarian carcinoma. Clin Cancer Res. 2008;14:2690–5.

    Article  CAS  PubMed  Google Scholar 

  • Ness RB., Cottreau C. Possible role of ovarian epithelial inflammation in ovarian cancer. J Natl Cancer Inst. 1999;91:1459–67.

    Article  CAS  PubMed  Google Scholar 

  • Ng EK, Chong WW, Jin H, et al. Differential expression of microRNAs in plasma of patients with colorectal cancer: a potential marker for colorectal cancer screening. Gut. 2009;58:1375–81.

    Article  CAS  PubMed  Google Scholar 

  • O’Donnell KA, Wentzel EA, Zeller KI, et al. c-Myc-regulated microRNAs modulate E2F1 expression. Nature. 2005;435:839–43.

    Article  PubMed  CAS  Google Scholar 

  • Olena AF, Patton JG. Genomic organization of microRNAs. J Cell Physiol. 2010;222:540–5.

    CAS  PubMed  Google Scholar 

  • Ota A, Tagawa H, Karnan S, et al. Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma. Cancer Res. 2004;64:3087–95.

    Article  CAS  PubMed  Google Scholar 

  • Pampalakis G, Diamandis EP, Katsaros D, et al. Down-regulation of dicer expression in ovarian cancer tissues. Clin Biochem. 2010;43:324–7.

    Article  CAS  PubMed  Google Scholar 

  • Pan Q, Luo X, Chegini N. Differential expression of microRNAs in myometrium and leiomyomas and regulation by ovarian steroids. J Cell Mol Med. 2008;12:227–40.

    Article  CAS  PubMed  Google Scholar 

  • Park SM, Gaur AB, Lengyel E, et al. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev. 2008;22:894–907.

    Article  CAS  PubMed  Google Scholar 

  • Paz N, Levanon EY, Amariglio N, et al. Altered adenosine-to-inosine RNA editing in human cancer. Genome Res. 2007;17:1586–95.

    Article  CAS  PubMed  Google Scholar 

  • Pedersen-Bjergaard J, Pedersen M, Roulston D, et al. Different genetic pathways in leukemogenesis for patients presenting with therapy-related myelodysplasia and therapy-related acute myeloid leukemia. Blood. 1995;86:3542–52.

    CAS  PubMed  Google Scholar 

  • Pekarsky Y, Santanam U, Cimmino A, et al. Tcl1 expression in chronic lymphocytic leukemia is regulated by miR-29 and miR-181. Cancer Res. 2006;66:11590–3.

    Article  CAS  PubMed  Google Scholar 

  • Phocas I, Sarandakou A, Sikiotis K, et al. A comparative study of serum alpha-beta A immunoreactive inhibin and tumor-associated antigens CA125 and CEA in ovarian cancer. Anticancer Res. 1996;16:3827–31.

    CAS  PubMed  Google Scholar 

  • Piek JM, van Diest PJ, Zweemer RP, et al. Dysplastic changes in prophylactically removed fallopian tubes of women predisposed to developing ovarian cancer. J Pathol. 2001;195:451–6.

    Article  CAS  PubMed  Google Scholar 

  • Rabinowits G, Gercel-Taylor C, Day JM, et al. Exosomal microRNA: a diagnostic marker for lung cancer. Clin Lung Cancer. 2009;10:42–6.

    Article  CAS  PubMed  Google Scholar 

  • Radisavljevic SV. The pathogenesis of ovarian inclusion cysts and cystomas. Obstet Gynecol. 1977;49:424–9.

    CAS  PubMed  Google Scholar 

  • Raveche ES, Salerno E, Scaglione BJ, et al. Abnormal microRNA-16 locus with synteny to human 13q14 linked to CLL in NZB mice. Blood. 2007;109:5079–86.

    Article  CAS  PubMed  Google Scholar 

  • Raver-Shapira N, Marciano E, Meiri E, et al. Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell. 2007;26:731–43.

    Article  CAS  PubMed  Google Scholar 

  • Resnick KE, Alder H, Hagan JP, et al. The detection of differentially expressed microRNAs from the serum of ovarian cancer patients using a novel real-time PCR platform. Gynecol Oncol. 2009;112:55–9.

    Article  CAS  PubMed  Google Scholar 

  • Rosell R, Wei J, Taron M. Circulating microRNA signatures of tumor-derived exosomes for early diagnosis of non-small-cell lung cancer. Clin Lung Cancer. 2009;10:8–9.

    Article  CAS  PubMed  Google Scholar 

  • Roush S, Slack FJ. The let-7 family of microRNAs. Trends Cell Biol. 2008;18:505–16.

    Article  CAS  PubMed  Google Scholar 

  • Rustin GJ, Bast RC Jr, Kelloff GJ, et al. Use of CA-125 in clinical trial evaluation of new therapeutic drugs for ovarian cancer. Clin Cancer Res. 2004;10:3919–26.

    Article  CAS  PubMed  Google Scholar 

  • Saito Y, Liang G, Egger G, et al. Specific activation of microRNA-127 with down-regulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell. 2006;9:435–43.

    Article  CAS  PubMed  Google Scholar 

  • Salvador S, Rempel A, Soslow RA, et al. Chromosomal instability in fallopian tube precursor lesions of serous carcinoma and frequent monoclonality of synchronous ovarian and fallopian tube mucosal serous carcinoma. Gynecol Oncol. 2008;110:408–17.

    Article  CAS  PubMed  Google Scholar 

  • Scott GK, Mattie MD, Berger CE, et al. Rapid alteration of microRNA levels by histone deacetylase inhibition. Cancer Res. 2006;66:1277–81.

    Article  CAS  PubMed  Google Scholar 

  • Seidman JD, Russell P, Kurman RJ. Surface epithelial tumor of the ovary. In: Kurman RJ, editor. Blaustein’s pathology of the female genital tract. 5th ed. New York, NY: Springer; 2002. pp. 791–904.

    Google Scholar 

  • Selcuklu SD, Donoghue MT, Spillane C. MiR-21 as a key regulator of oncogenic processes. Biochem Soc Trans. 2009;37:918–25.

    Article  CAS  PubMed  Google Scholar 

  • Sethupathy P, Collins FS. MicroRNA target site polymorphisms and human disease. Trends Genet. 2008;24:489–97.

    Article  CAS  PubMed  Google Scholar 

  • Shen J, Ambrosone CB, DiCioccio RA, et al. A functional polymorphism in the miR-146a gene and age of familial breast/ovarian cancer diagnosis. Carcinogenesis. 2008;29:1963–6.

    Article  CAS  PubMed  Google Scholar 

  • Smith Sehdev AE, Sehdev PS, Kurman RJ. Noninvasive and invasive micropapillary (low-grade) serous carcinoma of the ovary: a clinicopathologic analysis of 135 cases. Am J Surg Pathol. 2003;27:725–36.

    Article  PubMed  Google Scholar 

  • Sorrentino A, Liu CG, Addario A, et al. Role of microRNAs in drug-resistant ovarian cancer cells. Gynecol Oncol. 2008;111:478–86.

    Article  CAS  PubMed  Google Scholar 

  • Spizzo R, Nicoloso MS, Croce CM, et al. Snapshot: microRNAs in cancer. Cell. 2009;137:586.

    Google Scholar 

  • Suzuki HI, Yamagata K, Sugimoto K, et al. Modulation of microRNA processing by p53. Nature. 2009;460:529–33.

    Article  CAS  PubMed  Google Scholar 

  • Takamizawa J, Konishi H, Yanagisawa K, et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res. 2004;64:3753–6.

    Article  CAS  PubMed  Google Scholar 

  • Tay Y, Zhang J, Thomson AM, et al. MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature. 2008;455:1124–8.

    Article  CAS  PubMed  Google Scholar 

  • Taylor DD, Gercel-Taylor C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol. 2008;110:13–21.

    Article  CAS  PubMed  Google Scholar 

  • Trang P, Medina PP, Wiggins JF, et al. Regression of murine lung tumors by the let-7 microRNA. Oncogene. 2010;29:1580–7.

    Article  CAS  PubMed  Google Scholar 

  • van Jaarsveld MT, Helleman J, Berns EM, et al. MicroRNAs in ovarian cancer biology and therapy resistance. Int J Biochem Cell Biol. 2010;42:1282–90.

    Article  PubMed  CAS  Google Scholar 

  • Ventura A, Young AG, Winslow MM, et al. Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell. 2008;132:875–86.

    Article  CAS  PubMed  Google Scholar 

  • White NM, Chow TF, Mejia-Guerrero S, et al. Three dysregulated miRNAs control kallikrein 10 expression and cell proliferation in ovarian cancer. Br J Cancer. 2010;102:1244–53.

    Article  CAS  PubMed  Google Scholar 

  • Wightman B, Ha I, Ruvkun G. Post-transcriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell. 1993;75:855–62.

    Article  CAS  PubMed  Google Scholar 

  • Woods K, Thomson JM, Hammond SM. Direct regulation of an oncogenic micro-RNA cluster by E2F transcription factors. J Biol Chem. 2007;282:2130–4.

    Article  CAS  PubMed  Google Scholar 

  • Wu W, Lin Z, Zhuang Z, et al. Expression profile of mammalian microRNAs in endometrioid adenocarcinoma. Eur J Cancer Prev. 2009;18:50–5.

    Article  CAS  PubMed  Google Scholar 

  • Wurz K, Garcia RL, Goff BA, et al. MiR-221 and miR-222 alterations in sporadic ovarian carcinoma: relationship to CDKN1B, CDKNIC and overall survival. Genes Chromosomes Cancer. 2010;49:577–84.

    CAS  PubMed  Google Scholar 

  • Wyman SK, Parkin RK, Mitchell PS, et al. Repertoire of microRNAs in epithelial ovarian cancer as determined by next generation sequencing of small RNA cDNA libraries. PLoS One. 2009;4:e5311.

    Google Scholar 

  • Xiao C, Srinivasan L, Calado DP, et al. Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. Nat Immunol. 2008;9:405–14.

    Article  CAS  PubMed  Google Scholar 

  • Xu CF, Solomon E. Mutations of the BRCA1 gene in human cancer. Semin Cancer Biol. 1996;7:33–40.

    Article  CAS  PubMed  Google Scholar 

  • Yanaihara N, Caplen N, Bowman E, et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell. 2006;9:189–98.

    Article  CAS  PubMed  Google Scholar 

  • Yang N, Kaur S, Volinia S, et al. MicroRNA microarray identifies let-7i as a novel biomarker and therapeutic target in human epithelial ovarian cancer. Cancer Res. 2008b;68:10307–14.

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Kong W, He L, et al. MicroRNA expression profiling in human ovarian cancer: miR-214 induces cell survival and cisplatin resistance by targeting PTEN. Cancer Res. 2008a;68:425–33.

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Huang J, Yang N, et al. MicroRNAs exhibit high frequency genomic alterations in human cancer. Proc Natl Acad Sci USA. 2006;103:9136–41.

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Volinia S, Bonome T, et al. Genomic and epigenetic alterations deregulate microRNA expression in human epithelial ovarian cancer. Proc Natl Acad Sci USA. 2008a;105:7004–9.

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Yang N, Coukos G. MicroRNA in human cancer: one step forward in diagnosis and treatment. Adv Exp Med Biol. 2008b;622:69–78.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partly supported by grants from the Breast Cancer Alliance, the Ovarian Cancer Research Found, the Mary Kay Ash Charitable Foundation, National Cancer Institute (R01CA142776 and Ovarian Cancer SPORE P50CA83638-7951), and US Department of Defense (W81XWH-10-1-0082).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Netherlands

About this chapter

Cite this chapter

Li, C., Feng, Y., Coukos, G., Zhang, L. (2011). MicroRNAs in Epithelial Ovarian Cancer. In: Cho, W. (eds) MicroRNAs in Cancer Translational Research. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0298-1_14

Download citation

Publish with us

Policies and ethics