Skip to main content

MicroRNAs in Pancreatic Cancer: Potential Interests as Biomarkers and Therapeutic Tools

  • Chapter
  • First Online:
MicroRNAs in Cancer Translational Research

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is the fourth cause of death by cancer in Western countries. Its poor prognosis is primarily explained by a lack of early diagnostic markers and efficient therapeutic treatments. PDAC does not appear de novo but rather originates of an accumulation of genetic and epigenetic alterations that leads to an aberrant production of diverse molecules such as RNA and proteins. These altered expression profiles result in a multi-step progression of precursor lesions to invasive PDAC. Therefore, a better understanding of the early genetic and epigenetic alterations occurring in PDAC development is valuable for diagnostic and new therapeutic strategies. MicroRNAs (miRNAs) are small endogenous RNA molecules that function as translation inhibitors of messenger RNA by binding to their 3 untranslated region. These molecules are tightly involved in the regulation of many physiological processes such as development, proliferation, invasion, and apoptosis among others. Their expressions are profoundly altered in PDAC and are strongly involved in PDAC carcinogenesis. In this chapter, we describe the miRNAs for which the expression is altered in PDAC and PDAC pre-neoplastic lesions. We outline the different molecular mechanisms that lead to altered miRNA expression in PDAC cells as well as the signaling pathways affected in response to altered miRNA expression. Lastly, we review the potential interests of miRNA as biological markers and therapeutic tools for PDAC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bird AP. The relationship of DNA methylation to cancer. Cancer Surv. 1996;28:87–101.

    CAS  PubMed  Google Scholar 

  • Bloomston M, Frankel WL, Petrocca F, et al. MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA. 2007;297:1901–8.

    Article  CAS  PubMed  Google Scholar 

  • Bournet B, Souque A, Senesse P, et al. Endoscopic ultrasound-guided fine-needle aspiration biopsy coupled with KRAS mutation assay to distinguish pancreatic cancer from pseudotumoral chronic pancreatitis. Endoscopy. 2009;41:552–7.

    Article  CAS  PubMed  Google Scholar 

  • Burk U, Schubert J, Wellner U, et al. A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep. 2008;9:582–9.

    Article  CAS  PubMed  Google Scholar 

  • Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;6:857–66.

    Article  CAS  PubMed  Google Scholar 

  • Calin GA, Dumitru CD, Shimizu M, et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA. 2002;99:15524–9.

    Article  CAS  PubMed  Google Scholar 

  • Chang TC, Wentzel EA, Kent OA, et al. Transactivation of miR-34a by P53 broadly influences gene expression and promotes apoptosis. Mol Cell. 2007;26:745–52.

    Article  CAS  PubMed  Google Scholar 

  • Chang TC, Yu D, Lee YS, et al. Widespread microRNA repression by myc contributes to tumorigenesis. Nat Genet. 2008;40:43–50.

    Article  CAS  PubMed  Google Scholar 

  • Crosby ME, Devlin CM, Glazer PM, et al. Emerging roles of microRNAs in the molecular responses to hypoxia. Curr Pharm Des. 2009;15:3861–6.

    Article  CAS  PubMed  Google Scholar 

  • Dillhoff M, Liu J, Frankel W, et al. MicroRNA-21 is overexpressed in pancreatic cancer and a potential predictor of survival. J Gastrointest Surg. 2008;12:2171–6.

    Article  PubMed  Google Scholar 

  • du Rieu MC, Torrisani J, Selves J, et al. MicroRNA-21 is induced early in pancreatic ductal adenocarcinoma precursor lesions. Clin Chem. 2010;56:603–12.

    Article  CAS  PubMed  Google Scholar 

  • Feldmann G, Beaty R, Hruban RH, et al. Molecular genetics of pancreatic intraepithelial neoplasia. J Hepatobiliary Pancreat Surg. 2007;14:224–32.

    Article  PubMed  Google Scholar 

  • Giovannetti E, Funel N, Peters GJ, et al. MicroRNA-21 in pancreatic cancer: correlation with clinical outcome and pharmacologic aspects underlying its role in the modulation of gemcitabine activity. Cancer Res. 2010;70:4528–38.

    Article  CAS  PubMed  Google Scholar 

  • Gironella M, Seux M, Xie MJ, et al. Tumor protein 53-induced nuclear protein 1 expression is repressed by miR-155, and its restoration inhibits pancreatic tumor development. Proc Natl Acad Sci USA. 2007;104:16170–5.

    Article  CAS  PubMed  Google Scholar 

  • Greither T, Grochola LF, Udelnow A, et al. Elevated expression of microRNAs 155, 203, 210 and 222 in pancreatic tumors is associated with poorer survival. Int J Cancer. 2010;126:73–80.

    Article  CAS  PubMed  Google Scholar 

  • Habbe N, Koorstra JB, Mendell JT, et al. MicroRNA miR-155 is a biomarker of early pancreatic neoplasia. Cancer Biol Ther. 2009;8:4.

    Google Scholar 

  • Hanoun N, Delpu Y, Suriawinata AA, et al. The silencing of microRNA 148a production by DNA hypermethylation is an early event in pancreatic carcinogenesis. Clin Chem. 2010;56:1107–18.

    Article  CAS  PubMed  Google Scholar 

  • Hingorani SR, Petricoin EF, Maitra A, et al. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell. 2003;4:437–50.

    Article  CAS  PubMed  Google Scholar 

  • Ho AS, Huang X, Cao H, et al. Circulating miR-210 as a novel hypoxia marker in pancreatic cancer. Transl Oncol. 2010;3:109–13.

    Google Scholar 

  • Hruban RH, Adsay NV. Molecular classification of neoplasms of the pancreas. Hum Pathol. 2009;40:612–23.

    Article  CAS  PubMed  Google Scholar 

  • Hruban RH, Adsay NV, Albores-Saavedra J, et al. Pancreatic intraepithelial neoplasia: a new nomenclature and classification system for pancreatic duct lesions. Am J Surg Pathol. 2001;25:579–86.

    Article  CAS  PubMed  Google Scholar 

  • Hruban RH, Goggins M, Parsons J, et al. Progression model for pancreatic cancer. Clin Cancer Res. 2000;6:2969–72.

    CAS  PubMed  Google Scholar 

  • Huang X, Ding L, Bennewith KL, et al. Hypoxia-inducible miR-210 regulates normoxic gene expression involved in tumor initiation. Mol Cell. 2009;35:856–67.

    Article  CAS  PubMed  Google Scholar 

  • Hwang JH, Voortman J, Giovannetti E, et al. Identification of microRNA-21 as a biomarker for chemoresistance and clinical outcome following adjuvant therapy in resectable pancreatic cancer. PLoS One. 2010;5:e10630.

    Google Scholar 

  • Jemal A, Siegel R, Xu J, et al. Cancer statistics. CA Cancer J Clin. 2010; 60:277–300.

    Article  PubMed  Google Scholar 

  • Ji Q, Hao X, Zhang M, et al. MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells. PLoS One. 2009;4:e6816.

    Google Scholar 

  • Jung M, Schaefer A, Steiner I, et al. Robust microRNA stability in degraded RNA preparations from human tissue and cell samples. Clin Chem. 2010;56:998–1006.

    Article  CAS  PubMed  Google Scholar 

  • Kent OA, Mullendore M, Wentzel EA, et al. A resource for analysis of microRNA expression and function in pancreatic ductal adenocarcinoma cells. Cancer Biol Ther. 2009;8:21.

    Google Scholar 

  • Lee EJ, Gusev Y, Jiang J, et al. Expression profiling identifies microRNA signature in pancreatic cancer. Int J Cancer. 2007;120:1046–54.

    Article  CAS  PubMed  Google Scholar 

  • Lee KH, Lotterman C, Karikari C, et al. Epigenetic silencing of microRNA miR-107 regulates cyclin-dependent kinase 6 expression in pancreatic cancer. Pancreatology. 2009;9:293–301.

    Article  CAS  PubMed  Google Scholar 

  • Li A, Omura N, Hong SM, et al. Pancreatic cancers epigenetically silence SIP1 and hypomethylate and overexpress miR-200a/200b in association with elevated circulating miR-200a and miR-200b levels. Cancer Res. 2010a;70:5226–37.

    Article  CAS  PubMed  Google Scholar 

  • Li Y, VandenBoom TG 2nd, Kong D, et al. Up-regulation of miR-200 and let-7 by natural agents leads to the reversal of epithelial-to-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells. Cancer Res. 2009;69:6704–12.

    Article  CAS  PubMed  Google Scholar 

  • Li Y, VandenBoom TG 2nd, Wang Z, et al. MiR-146a suppresses invasion of pancreatic cancer cells. Cancer Res. 2010b;70:1486–95.

    Article  CAS  PubMed  Google Scholar 

  • Lodygin D, Tarasov V, Epanchintsev A, et al. Inactivation of miR-34a by aberrant cpg methylation in multiple types of cancer. Cell Cycle. 2008;7:2591–600.

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Getz G, Miska EA, et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435:834–8.

    Article  CAS  PubMed  Google Scholar 

  • Maitra A, Hruban RH. Pancreatic cancer. Annu Rev Pathol. 2008;3:157–88.

    Article  CAS  PubMed  Google Scholar 

  • Mathew LK, Simon MC. MiR-210: a sensor for hypoxic stress during tumorigenesis. Mol Cell. 2009;35:737–8.

    Article  CAS  PubMed  Google Scholar 

  • Mees ST, Mardin WA, Sielker S, et al. Involvement of CD40 targeting miR-224 and miR-486 on the progression of pancreatic ductal adenocarcinomas. Ann Surg Oncol. 2009;16:2339–50.

    Article  PubMed  Google Scholar 

  • Mees ST, Mardin WA, Wendel C, et al. EP300 – a miRNA-regulated metastasis suppressor gene in ductal adenocarcinomas of the pancreas. Int J Cancer. 2010;126:114–24.

    Google Scholar 

  • Moriyama T, Ohuchida K, Mizumoto K, et al. MicroRNA-21 modulates biological functions of pancreatic cancer cells including their proliferation, invasion, and chemoresistance. Mol Cancer Ther. 2009;12:12.

    Google Scholar 

  • Morris JP 4th, McManus MT. Slowing down the Ras lane: miRNAs as tumor suppressors? Sci STKE. 2005;2005:pe41.

    Google Scholar 

  • Muniyappa MK, Dowling P, Henry M, et al. MiRNA-29a regulates the expression of numerous proteins and reduces the invasiveness and proliferation of human carcinoma cell lines. Eur J Cancer. 2009;45:3104–18.

    Article  CAS  PubMed  Google Scholar 

  • Park JK, Lee EJ, Esau C, et al. Antisense inhibition of microRNA-21 or -221 arrests cell cycle, induces apoptosis, and sensitizes the effects of gemcitabine in pancreatic adenocarcinoma. Pancreas. 2009;38:e190–9.

    Google Scholar 

  • Ryu JK, Hong SM, Karikari CA, et al. Aberrant microRNA-155 expression is an early event in the multistep progression of pancreatic adenocarcinoma. Pancreatology. 2010;10:66–73.

    Google Scholar 

  • Safioleas MC, Moulakakis KG. Pancreatic cancer today. Hepatogastroenterology. 2004;51:862–8.

    PubMed  Google Scholar 

  • Saito Y, Liang G, Egger G, et al. Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell. 2006;9:435–43.

    Article  CAS  PubMed  Google Scholar 

  • Sato N, Maitra A, Fukushima N, et al. Frequent hypomethylation of multiple genes overexpressed in pancreatic ductal adenocarcinoma. Cancer Res. 2003;63:4158–66.

    CAS  PubMed  Google Scholar 

  • Scott GK, Mattie MD, Berger CE, et al. Rapid alteration of microRNA levels by histone deacetylase inhibition. Cancer Res. 2006;66:1277–81.

    Article  CAS  PubMed  Google Scholar 

  • Seux M, Iovanna J, Dagorn JC, et al. MicroRNAs in pancreatic ductal adenocarcinoma: new diagnostic and therapeutic clues. Pancreatology. 2008;9:66–72.

    Article  PubMed  Google Scholar 

  • Sun M, Estrov Z, Ji Y, et al. Curcumin (diferuloylmethane) alters the expression profiles of microRNAs in human pancreatic cancer cells. Mol Cancer Ther. 2008;7:464–73.

    Article  CAS  PubMed  Google Scholar 

  • Szafranska AE, Davison TS, John J, et al. MicroRNA expression alterations are linked to tumorigenesis and non-neoplastic processes in pancreatic ductal adenocarcinoma. Oncogene. 2007;26:4442–52.

    Article  CAS  PubMed  Google Scholar 

  • Szafranska AE, Doleshal M, Edmunds HS, et al. Analysis of microRNAs in pancreatic fine-needle aspirates can classify benign and malignant tissues. Clin Chem. 2008;54:1716–24.

    Article  CAS  PubMed  Google Scholar 

  • Torrisani J, Bournet B, du Rieu MC, et al. Let-7 microRNA transfer in pancreatic cancer-derived cells inhibits in vitro cell proliferation but fails to alter tumor progression. Hum Gene Ther. 2009;20:831–41.

    Article  CAS  PubMed  Google Scholar 

  • Torrisani J, Buscail L. Molecular pathways of pancreatic carcinogenesis. Ann Pathol. 2002;22:349–55.

    PubMed  Google Scholar 

  • Tsuda N, Ishiyama S, Li Y, et al. Synthetic microRNA designed to target glioma-associated antigen 1 transcription factor inhibits division and induces late apoptosis in pancreatic tumor cells. Clin Cancer Res. 2006;12:6557–64.

    Article  CAS  PubMed  Google Scholar 

  • Volinia S, Calin GA, Liu CG, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA. 2006;103:2257–61.

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Chen J, Chang P, et al. MicroRNAs in plasma of pancreatic ductal adenocarcinoma patients as novel blood-based biomarkers of disease. Cancer Prev Res (Phila). 2009;2:807–13.

    Article  CAS  Google Scholar 

  • Watanabe S, Ueda Y, Akaboshi S, et al. HMGA2 maintains oncogenic RAS-induced epithelial-mesenchymal transition in human pancreatic cancer cells. Am J Pathol. 2009;174:854–68.

    Article  CAS  PubMed  Google Scholar 

  • Weiss FU, Marques IJ, Woltering JM, et al. Retinoic acid receptor antagonists inhibit miR-10a expression and block metastatic behavior of pancreatic cancer. Gastroenterology. 2009;137:2136–45.

    Article  CAS  PubMed  Google Scholar 

  • Wellner U, Schubert J, Burk UC, et al. The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol. 2009;11:1487–95.

    Article  CAS  PubMed  Google Scholar 

  • Yan HJ, Wu JX, Liu WS, et al. MicroRNA-20a overexpression inhibited proliferation and metastasis of pancreatic carcinoma cells. Hum Gene Ther. 2010;21:1723–34.

    Article  CAS  PubMed  Google Scholar 

  • Yu S, Lu Z, Liu C, et al. MiRNA-96 suppresses KRAS and functions as a tumor suppressor gene in pancreatic cancer. Cancer Res. 2010b;70:6015–25.

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Ohuchida K, Mizumoto K, et al. MicroRNA, hsa-miR-200c, is an independent prognostic factor in pancreatic cancer and its upregulation inhibits pancreatic cancer invasion but increases cell proliferation. Mol Cancer. 2010a;9:169.

    Google Scholar 

  • Zhang S, Cai X, Huang F, et al. Effect of trichostatin a on viability and microRNA expression in human pancreatic cancer cell line BxPC-3. Exp Oncol. 2008;30:265–8.

    CAS  PubMed  Google Scholar 

  • Zhang Y, Li M, Wang H, et al. Profiling of 95 microRNAs in pancreatic cancer cell lines and surgical specimens by real-time PCR analysis. World J Surg. 2009;33:698–709.

    Article  PubMed  Google Scholar 

  • Zhu Z, Gao W, Qian Z, et al. Genetic variation of miRNA sequence in pancreatic cancer. Acta Biochim Biophys Sin (Shanghai). 2009;41:407–13.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr Dina Arvanitis (Centre de Biologie du Développement, Toulouse) for critical reading of the manuscript. J.T. was funded by the Ligue Nationale contre le Cancer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérôme Torrisani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Netherlands

About this chapter

Cite this chapter

Cordelier, P., Torrisani, J. (2011). MicroRNAs in Pancreatic Cancer: Potential Interests as Biomarkers and Therapeutic Tools. In: Cho, W. (eds) MicroRNAs in Cancer Translational Research. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0298-1_13

Download citation

Publish with us

Policies and ethics