Skip to main content

Proteomic Profiling of Hepatic Metastases: Paving the Way to Individualized Therapy

  • Chapter
  • First Online:
Liver Metastasis: Biology and Clinical Management

Part of the book series: Cancer Metastasis - Biology and Treatment ((CMBT,volume 16))

  • 1175 Accesses

Abstract

Cancer development, like most other human diseases, is the consequence of functional cellular alterations that drive to deregulation of tissue homeostasis. These modifications translate into stronger survival abilities and profound re-adjustments of the subtle balance between proliferative rates and regulated cell death programs. Moreover, further alterations in selected cell sub-clones allow specific cells not only to invade into the local surrounding tissue, but also to enter the systemic circulation – via lymphatic or blood vessels – and to establish new cancer colonies in a host organ. Because of the central role that the protein network plays in cellular function and in maintenance of normal cellular homeostasis, proteomics has become an intense focus of study in oncology today. In this context, technological approaches such as Reverse Phase Protein Microarray that utilize small input samples such as fine needle aspirants or tiny core biopsy samples, routinely used for analysis of metastatic lesions, could have a dramatic impact at the bedside as the gatekeeper for therapeutic selection for each patient. Several studies revealed discrepancies between pathway activation in the primary tumor and in the hepatic metastases, indicating an influence not only of the primary tumor but also of the host microenvironment in the development of metastases. These findings highlight the importance of metastatic lesion profile analysis and suggest its potential in selecting patients for therapy. The use of data derived not only from the primary tumor but also from tumors in secondary sites that ultimately drive the course of the disease is fundamental for clinical decision to increase therapeutic efficacy as well as in the development of new, more specific, compounds for the treatment of metastatic cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

FDA:

Food and Drug Administration

IHC:

immunohistochemistry

FPM:

forward phase microarrays

RPPA:

reverse phase protein microarrays

EDT:

post-excision delay time

PDT:

processing delay time

LCM:

laser capture microdissection

EGF:

epidermal growth factor

EGFR:

epidermal growth factor receptor

COX-2:

cyclooxygenase 2

References

  1. Leber MF, Efferth T (2009) Molecular principles of cancer invasion and metastasis (review). Int J Oncol 34:881–895

    PubMed  CAS  Google Scholar 

  2. Nguyen DX, Bos PD, Massague J (2009) Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer 9:274–284

    Article  PubMed  CAS  Google Scholar 

  3. Fidler IJ (2003) The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer, 453–458

    Google Scholar 

  4. Fidler IJ (2002) The organ microenvironment and cancer metastasis. Differentiation 70:498–505

    Article  PubMed  Google Scholar 

  5. Yilmaz M, Christofori G, Lehembre F (2007) Distinct mechanisms of tumor invasion and metastasis. Trends Mol Med 13:535–541

    Article  PubMed  CAS  Google Scholar 

  6. Gassmann P, Haier J (2008) The tumor cell-host organ interface in the early onset of metastatic organ colonisation. Clin Exp Metastasis 25:171–181

    Article  PubMed  CAS  Google Scholar 

  7. Fidler IJ (2001) Seed and soil revisited: contribution of the organ microenvironment to cancer metastasis. Surg Oncol Clin N Am 10:257–269, vii–viiii

    PubMed  CAS  Google Scholar 

  8. Joyce JA, Pollard JW (2009) Microenvironmental regulation of metastasis. Nat Rev Cancer 9:239–252

    Article  PubMed  CAS  Google Scholar 

  9. Chambers AF, Groom AC, MacDonald IC (2002) Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2:563–572

    Article  PubMed  CAS  Google Scholar 

  10. Garcia-Closas M, Brinton LA, Lissowska J, Chatterjee N, Peplonska B, Anderson WF et al (2006) Established breast cancer risk factors by clinically important tumour characteristics. Br J Cancer 95:123–129

    Article  PubMed  CAS  Google Scholar 

  11. Morris M, Iacopetta B, Platell C (2007) Comparing survival outcomes for patients with colorectal cancer treated in public and private hospitals. Med J Aust 186:296–300

    PubMed  Google Scholar 

  12. Radinsky R (1995) Modulation of tumor cell gene expression and phenotype by the organ-specific metastatic environment. Cancer Metastasis Rev 14:323–338

    Article  PubMed  CAS  Google Scholar 

  13. Radinsky R, Ellis LM (1996) Molecular determinants in the biology of liver metastasis. Surg Oncol Clin N Am 5:215–229

    PubMed  CAS  Google Scholar 

  14. Ideker T, Thorsson V, Ranish JA, Christmas R, Buhler J, Eng JK et al (2001) Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 292:929–934

    Article  PubMed  CAS  Google Scholar 

  15. Wulfkuhle J, Espina V, Liotta L, Petricoin E (2004) Genomic and proteomic technologies for individualisation and improvement of cancer treatment. Eur J Cancer 40:2623–2632

    Article  PubMed  CAS  Google Scholar 

  16. Nielsen UB, Cardone MH, Sinskey AJ, MacBeath G, Sorger PK (2003) Profiling receptor tyrosine kinase activation by using Ab microarrays. Proc Natl Acad Sci USA 100:9330–9335

    Article  PubMed  Google Scholar 

  17. Dangle PP, Zaharieva B, Jia H, Pohar KS (2009) Ras-MAPK pathway as a therapeutic target in cancer – emphasis on bladder cancer. Recent Pat Anticancer Drug Discov 4:125–136

    Article  PubMed  CAS  Google Scholar 

  18. Rini BI (2009) Vascular endothelial growth factor-targeted therapy in metastatic renal cell carcinoma. Cancer 115:2306–2312

    Article  PubMed  CAS  Google Scholar 

  19. Schenone S, Bruno O, Radi M, Botta M (2009) New insights into small-molecule inhibitors of Bcr-Abl. Med Res Rev. Published online Wiley InterScience. http://www.interscience.wiley.com. doi:10.1002/med.20175

  20. Aguilera DG, Tsimberidou AM (2009) Dasatinib in chronic myeloid leukemia: a review. Ther Clin Risk Manag 5:281–289

    PubMed  CAS  Google Scholar 

  21. Browne BC, O’Brien N, Duffy MJ, Crown J, O’Donovan N (2009) HER-2 signaling and inhibition in breast cancer. Curr Cancer Drug Targets 9:419–438

    Article  PubMed  CAS  Google Scholar 

  22. Arteaga CL (2003) EGF receptor as a therapeutic target: patient selection and mechanisms of resistance to receptor-targeted drugs. J Clin Oncol 21:289s–291s

    Article  PubMed  Google Scholar 

  23. Gown AM, Goldstein LC, Barry TS, Kussick SJ, Kandalaft PL, Kim PM et al (2008) High concordance between immunohistochemistry and fluorescence in situ hybridization testing for HER2 status in breast cancer requires a normalized IHC scoring system. Mod Pathol 21:1271–1277

    Article  PubMed  CAS  Google Scholar 

  24. Umemura S, Osamura RY (2004) Utility of immunohistochemistry in breast cancer practice. Breast Cancer 11:334–338

    Article  PubMed  Google Scholar 

  25. Hanna W (2001) Testing for HER2 status. Oncology 61:22–30

    Article  PubMed  CAS  Google Scholar 

  26. Choudhury KR, Yagle KJ, Swanson PE, Krohn KA, Rajendran JG (2009) A robust automated measure of average antibody staining in immunohistochemistry images. J Histochem Cytochem. 58:95–107

    Google Scholar 

  27. Allred DC, Harvey JM, Berardo M, Clark GM (1998) Prognostic and predictive factors in breast cancer by immunohistochemical analysis. Mod Pathol 11:155–168

    PubMed  CAS  Google Scholar 

  28. Espina V, Edmiston KH, Heiby M, Pierobon M, Sciro M, Merritt B et al (2008) A portrait of tissue phosphoprotein stability in the clinical tissue procurement process. Mol Cell Proteomics 7:1998–2018

    Article  PubMed  CAS  Google Scholar 

  29. Unlu M, Morgan ME, Minden JS (1997) Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 18:2071–2077

    Article  PubMed  CAS  Google Scholar 

  30. Celis JE, Gromov P (2003) Proteomics in translational cancer research: toward an integrated approach. Cancer Cell 3:9–15

    Article  PubMed  CAS  Google Scholar 

  31. Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422:198–207

    Article  PubMed  CAS  Google Scholar 

  32. Lin D, Tabb DL, Yates JR 3rd (2003) Large-scale protein identification using mass spectrometry. Biochim Biophys Acta 1646:1–10

    PubMed  CAS  Google Scholar 

  33. Chen CH (2008) Review of a current role of mass spectrometry for proteome research. Anal Chim Acta 624:16–36

    Article  PubMed  CAS  Google Scholar 

  34. Haab BB (2005) Antibody arrays in cancer research. Mol Cell Proteomics 4:377–383

    Article  PubMed  CAS  Google Scholar 

  35. Espina V, Woodhouse EC, Wulfkuhle J, Asmussen HD, Petricoin EF 3rd, Liotta LA (2004) Protein microarray detection strategies: focus on direct detection technologies. J Immunol Methods 290:121–133

    Article  PubMed  CAS  Google Scholar 

  36. Espina V, Mehta AI, Winters ME, Calvert V, Wulfkuhle J, Petricoin EF 3rd et al (2003) Protein microarrays: molecular profiling technologies for clinical specimens. Proteomics 3:2091–2100

    Article  PubMed  CAS  Google Scholar 

  37. Charboneau L, Tory H, Chen T, Winters M, Petricoin EF 3rd, Liotta LA et al (2002) Utility of reverse phase protein arrays: applications to signalling pathways and human body arrays. Brief Funct Genomic Proteomic 1:305–315

    Article  PubMed  CAS  Google Scholar 

  38. Sheehan KM, Calvert VS, Kay EW, Lu Y, Fishman D, Espina V et al (2005) Use of reverse phase protein microarrays and reference standard development for molecular network analysis of metastatic ovarian carcinoma. Mol Cell Proteomics 4:346–355

    Article  PubMed  CAS  Google Scholar 

  39. Steinitz M, Tamir S (1995) An improved method to create nitrocellulose particles suitable for the immobilization of antigen and antibody. J Immunol Methods 187:171–177

    Article  PubMed  CAS  Google Scholar 

  40. Grubb RL, Calvert VS, Wulkuhle JD, Paweletz CP, Linehan WM, Phillips JL et al (2003) Signal pathway profiling of prostate cancer using reverse phase protein arrays. Proteomics 3:2142–2146

    Article  PubMed  CAS  Google Scholar 

  41. Wulfkuhle JD, Aquino JA, Calvert VS, Fishman DA, Coukos G, Liotta LA et al (2003) Signal pathway profiling of ovarian cancer from human tissue specimens using reverse-phase protein microarrays. Proteomics 3:2085–2090

    Article  PubMed  CAS  Google Scholar 

  42. Paweletz CP, Charboneau L, Bichsel VE, Simone NL, Chen T, Gillespie JW et al (2001) Reverse phase protein microarrays which capture disease progression show activation of pro-survival pathways at the cancer invasion front. Oncogene 20:1981–1989

    Article  PubMed  CAS  Google Scholar 

  43. Emmert-Buck MR, Bonner RF, Smith PD, Chuaqui RF, Zhuang Z, Goldstein SR et al (1996) Laser capture microdissection. Science 274:998–1001

    Article  PubMed  CAS  Google Scholar 

  44. Karapetis CS, Khambata-Ford S, Jonker DJ, O’Callaghan CJ, Tu D, Tebbutt NC et al (2008) K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med 359:1757–1765

    Article  PubMed  CAS  Google Scholar 

  45. Loupakis F, Pollina L, Stasi I, Ruzzo A, Scartozzi M, Santini D et al (2009) PTEN expression and KRAS mutations on primary tumors and metastases in the prediction of benefit from cetuximab plus irinotecan for patients with metastatic colorectal cancer. J Clin Oncol 27:2622–2629

    Article  PubMed  CAS  Google Scholar 

  46. Paget S (1989) The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev 8:98–101

    PubMed  CAS  Google Scholar 

  47. Ramaswamy S, Ross KN, Lander ES, Golub TR (2003) A molecular signature of metastasis in primary solid tumors. Nat Genet 33:49–54

    Article  PubMed  CAS  Google Scholar 

  48. Wulfkuhle JD, Speer R, Pierobon M, Laird J, Espina V, Deng J et al (2008) Multiplexed cell signaling analysis of human breast cancer applications for personalized therapy. J Proteome Res 7:1508–1517

    Article  PubMed  CAS  Google Scholar 

  49. Petricoin EF, 3rd, Bichsel VE, Calvert VS, Espina V, Winters M, Young L et al (2005) Mapping molecular networks using proteomics: a vision for patient-tailored combination therapy. J Clin Oncol 23:3614–3621

    Article  PubMed  CAS  Google Scholar 

  50. Pierobon M, Calvert V, Belluco C, Garaci E, Deng J, Lise M et al (2009) Multiplexed cell signaling analysis of metastatic and nonmetastatic colorectal cancer reveals COX2-EGFR signaling activation as a potential prognostic pathway biomarker. Clin Colorectal Cancer 8:110–117

    Article  CAS  Google Scholar 

  51. Belluco C, Mammano E, Petricoin E, Prevedello L, Calvert V, Liotta L et al (2005 July) Kinase substrate protein microarray analysis of human colon cancer and hepatic metastasis. Clin Chim Acta 357:180–183

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariaelena Pierobon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Silvestri, A., Petricoin, E.F., Liotta, L.A., Pierobon, M. (2011). Proteomic Profiling of Hepatic Metastases: Paving the Way to Individualized Therapy. In: Brodt, P. (eds) Liver Metastasis: Biology and Clinical Management. Cancer Metastasis - Biology and Treatment, vol 16. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0292-9_14

Download citation

Publish with us

Policies and ethics