Advertisement

A Newly Cooperative PSO – Multiple Particle Swarm Optimizers with Diversive Curiosity, MPSOα/DC

  • Hong ZhangEmail author
Chapter
  • 694 Downloads
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 70)

Abstract

In this paper we propose a newly multiple particle swarm optimizers with diversive curiosity (MPSOα/DC) for enhancing the search performance. It has three outstanding features: (1) Implementing plural particle swarms in parallel to explore; (2) Finding the most suitable solution in a small limited space by a localized random search for correcting the solution found by each particle swarm; (3) Introducing diversive curiosity into the multi-swarm to alleviate stagnation. To demonstrate the proposal’s effectiveness, computer experiments on a suite of benchmark problems are carried out. We investigate its intrinsic characteristics, and compare the search performance with other methods. The obtained results show that the search performance of the MPSOα/DC is superior to that by the PSO/DC, EPSO, OPSO, and RGA/E for the given benchmark problems.

Keywords

Cooperative particle swarm optimization Hybrid computation Localized random search Exploitation and exploration Diversive and specific curiosity Swarm intelligence 

Notes

Acknowledgements

This research was partially supported by Grant-in-Aid Scientific Research(C) (22500132) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

References

  1. 1.
    van den Bergh, F., Engelbrecht, A.P.: A cooperative approach to particle swarm optimization. IEEE Trans. Evol. Comput. 8(3), 225–239 (2004) CrossRefGoogle Scholar
  2. 2.
    Berlyne, D.: Conflict, Arousal, and Curiosity. McGraw-Hill Book Co, New York (1960) CrossRefGoogle Scholar
  3. 3.
    Chang, J.F., Chu, S.C., Roddick, J.F., Pan, J.S.: A parallel particle swarm optimization algorithm with communication strategies. J. Inform. Sci. Eng. 21, 809–818 (2005) Google Scholar
  4. 4.
    Clerc, M.: Particle Swarm Optimization. ISTE Ltd., London (2006) zbMATHCrossRefGoogle Scholar
  5. 5.
    Clerc, M., Kennedy, J.: The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2000) CrossRefGoogle Scholar
  6. 6.
    Cohen, J.D., McClure, S.M., Yu, A.J.: Should I stay or should I go? How the human brain manages the trade-off between exploitation and exploration. Philos. Trans. R. Soc. B 362, 933–942 (2007) CrossRefGoogle Scholar
  7. 7.
    Day, H.: Curiosity and the interested explorer. Perform. Instruct. 21(4), 19–22 (1982) CrossRefGoogle Scholar
  8. 8.
    Eberhart, R.C., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 4–6 October 1995, pp. 39–43 (1995) Google Scholar
  9. 9.
    El-Abd, M., Kamel, M.S.: A taxonomy of cooperative particle swarm optimizers. Int. J. Comput. Intell. Res. 4(2), 137–144 (2008) Google Scholar
  10. 10.
    Eshelman, L.J., Schaffer, J.D.: Real-coded genetic algorithms and interval-schemata. In: Foundations of Genetic Algorithms, vol. 2, pp. 187–202. Morgan Kaufman Publishers, San Mateo (1993) Google Scholar
  11. 11.
    Goldberg, D.E.: Genetic Algorithm in Search Optimization and Machine Learning. Addison-Wesley, Reading (1989) Google Scholar
  12. 12.
    Juang, C.-F.: A hybrid of genetic algorithm and particle swarm optimization for recurrent network design, IEEE Trans. Syst. Man Cybern. B 34(2), 997–1006 (2004) CrossRefGoogle Scholar
  13. 13.
    Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of the 1995 IEEE International Conference on Neural Networks, Perth, Australia, 27 November–1 December 1995, pp. 1942–1948 (1995) Google Scholar
  14. 14.
    Kennedy, J., Mendes, R.: Population structure and particle swarm performance. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC2002), Honolulu, Hawaii, USA, 12–17 May 2002, pp. 1671–1676 (2002) Google Scholar
  15. 15.
    Loewenstein, G.: The psychology of curiosity: a review and reinterpretation. Psychol. Bull. 116(1), 75–98 (1994) CrossRefGoogle Scholar
  16. 16.
    Meissner, M., Schmuker, M., Schneider, G.: Optimized particle swarm optimization (OPSO) and its application to artificial neural network training. BMC Bioinform. 7(125) (2006) Google Scholar
  17. 17.
    Moscato, P.: On evolution, search optimization, genetic algorithms and martial arts: towards memetic algorithms. Technical Report Caltech Concurrent Computation Program, Report 826, California Institute of Technology, Pasadena, CA 91125 (1989) Google Scholar
  18. 18.
    Niu, B., Zhu, Y., He, X.: Multi-population cooperation particle swarm optimization. In: LNCS, vol. 3630, pp. 874–883. Springer, Heidelberg (2005) Google Scholar
  19. 19.
    Opdal, P.M.: Curiosity, wonder and education seen as perspective development. Stud. Philos. Educ. 20(4), 331–344 (2001) CrossRefGoogle Scholar
  20. 20.
    Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization – An overview. Swarm Intell. 1, 33–57 (2007) CrossRefGoogle Scholar
  21. 21.
    Shi, Y., Eberhart, R.C.: A modified particle swarm optimiser. In: Proceedings of the IEEE International Conference on Evolutionary Computation, Anchorage, Alaska, USA, 4–9 May 1998, pp. 69–73 (1998) Google Scholar
  22. 22.
    Solis, F.J., Wets, R.J.-B.: Minimization by random search techniques. Math. Oper. Res. 6(1), 19–30 (1981) MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Spall, J.C.: Stochastic Optimization. In: Gentle, J., et al. (eds.) Handbook of Computational Statistics, pp. 169–197. Springer, Heidelberg (2004) Google Scholar
  24. 24.
    Suganthan, P.N., Hansen, N., Liang, J.J., Deb, K., Chen, Y.-P., Auger, A., Tiwari, S.: Problem definitions and evaluation criteria for the CEC 2005. http//:www.ntu.edu.sg/home/epnsugan/index_files/CEC-05/Tech-Report-May-30-05.pdf
  25. 25.
    Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997) CrossRefGoogle Scholar
  26. 26.
    Zhang, H.: Multiple particle swarm optimizers with diversive curiosity. In: Lecture Notes in Engineering and Computer Science: Proceedings of the International MultiConference of Engineers and Computer Scientists 2010, IMECS 2010, Hong Kong, 17–19 March 2010, pp. 174–179 (2010) Google Scholar
  27. 27.
    Zhang, H., Ishikawa, M.: A solution to combinatorial optimization with time-varying parameters by a hybrid genetic algorithm. In: Nakagawa, N., et al. (eds.) Brain-Inspired IT I. Int. Congr. Ser., vol. 1269, pp. 149–152. Elsevier, Amsterdam (2004) Google Scholar
  28. 28.
    Zhang, H., Ishikawa, M.: Evolutionary particle swarm optimization (EPSO) – Estimation of optimal PSO parameters by GA. In: Proceedings of the International MultiConference of Engineers and Computer Scientists 2007 (IMECS 2007), Hong Kong, 21–23 March 2007, pp. 13–18 (2007) Google Scholar
  29. 29.
    Zhang, H., Ishikawa, M.: Evolutionary particle swarm optimization – Metaoptimization method with GA for estimating optimal PSO methods. In: Castillo, O., et al. (eds.) Trends in Intelligent Systems and Computer Engineering. LNEE, vol. 6, pp. 75–90. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  30. 30.
    Zhang, H., Ishikawa, M.: Improving the performance of particle swarm optimization with diversive curiosity. In: Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 (IMECS 2008), Hong Kong, 19–21 March 2008, pp. 1–6 (2008) Google Scholar
  31. 31.
    Zhang, H., Ishikawa, M.: Particle swarm optimization with diversive curiosity – An endeavor to enhance swarm intelligence. IAENG Int. J. Comput. Sci. 35(3), 275–284 (2008) Google Scholar
  32. 32.
    Zhang, H., Ishikawa, M.: Characterization of particle swarm optimization with diversive curiosity. J. Neural Comput. Appl., 409–415 (2009) Google Scholar
  33. 33.
    Zhang, H., Ishikawa, M.: The performance verification of an evolutionary canonical particle swarm optimizers. Neural Netw. 23(4), 510–516 (2010) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of Brain Science and Engineering, Graduate School of Life Science & Systems EngineeringKyushu Institute of TechnologyWakamatsu, KitakyushuJapan

Personalised recommendations