The Use of Higher-Order Spectrum for Fault Quantification of Industrial Electric Motors

  • Juggrapong TreetrongEmail author
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 70)


This chapter proposes a new method of electric motor fault quantification. Higher Order Spectrum (HOS) is a signal processing used as a fault quantification technique. Previous researches have shown that the faults in the stator or rotor generally show sideband frequencies around the main frequency (50 Hz) and its higher harmonics in the spectrum of the Motor Current Signature Analysis (MCSA). However in the present experimental studies such observations are not seen, but the faults in the stator or the rotor may distort the sinusoidal response of the motor RPM and the main frequency. Hence this research proposes the HOS here, namely the Bispectrum of the MCSA, because it relates to both amplitude and phase of number of harmonics in a signal. The Bispectrum with the unwrapped phase angle along its frequency is also analyzed. The tests can show that the proposed method can detect the faults accurately. The proposed method can also show that the severity level of the faults can be measured by observing the change in the heights of the Bispectrum amplitude.


Induction motors Higher Order Spectrum (HOS) Bispectrum Condition monitoring Fault detection 


  1. 1.
    Aroquiadassou, G., Henao, H., Capolino, G.-A.: Experimental analysis of the dq0 stator current component spectra of a 42V fault-tolerant six-phase induction machine drive with opened stator phases. In: IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives, SDEMPED 2007, 6–8 Sept. 2007, pp. 52–57 (2007) Google Scholar
  2. 2.
    Ayhan, B., Chow, M.Y., Song, M.H.: Multiple signature processing-based fault detection schemes for broken rotor bar in induction motors. IEEE Trans. Energy Conv. 20(2), 336–343 (2005) CrossRefGoogle Scholar
  3. 3.
    Bachir, S., Tnani, S., Trigeassou, J.-C., Champenois, G.: Diagnosis by parameter estimation of stator and rotor faults occurring in induction machines. IEEE Trans. Indust. Electron. 53(3), 963–973 (2006) CrossRefGoogle Scholar
  4. 4.
    Barut, M., Bogosyan, S., Gokasan, M.: Speed-sensorless estimation for induction motors using extended Kalman filters. IEEE Trans. Indust. Electron. 54(1), 272–280 (2007) CrossRefGoogle Scholar
  5. 5.
    Bellini, A., Filippetti, F., Franceschini, G., Tassoni, C.: Closed-loop control impact on the diagnosis of induction motors faults. IEEE Trans. Indust. Appl. 36(5), 1318–1329 (2000) CrossRefGoogle Scholar
  6. 6.
    Bellini, A., Filippetti, F., Franceschini, G., Tassoni, C., Kliman, G.B.: Quantitative evaluation of induction motor broken bars by means of electrical signature analysis. IEEE Trans. Indust. Appl. 37(5), 1248–1255 (2001) CrossRefGoogle Scholar
  7. 7.
    Collis, W.B., White, P.R., Hammond, J.K.: Higher order spectra: the bispectrum and trispectrum. Mech. Syst. Signal Process. 12(3), 375–395 (1998) CrossRefGoogle Scholar
  8. 8.
    Didier, G., Ternisien, E., Caspary, O., Razik, H.: A new approach to detect broken rotor bars in induction machines by current spectrum analysis. Mech. Syst. Signal Process. 21, 1127–1142 (2007) CrossRefGoogle Scholar
  9. 9.
    Fackrel, J.W.A., White, P.R., Hammond, J.K., Pinnington, R.J., Parsons, T.A.: The interpretation of the bispectra of vibration signals – I. Theory. Mech. Syst. Signal Process. 9(3), 257–266 (1995) CrossRefGoogle Scholar
  10. 10.
    Henao, H., Martis, C., Capolino, G.-A.: An equivalent internal circuit of the induction machine for advanced spectral analysis. IEEE Trans. Indust. Appl. 40(3), 726–734 (2004) CrossRefGoogle Scholar
  11. 11.
    Henao, H., Razik, H., Capolino, G.-A.: Analytical approach of the stator current frequency harmonics computation for detection of induction machine rotor faults. IEEE Trans. Indust. Appl. 41(3), 801–807 (2005) CrossRefGoogle Scholar
  12. 12.
    Huang, K.S., Kent, W., Wu, Q.H., Turner, D.R.: Parameter identification of an induction machine using genetic algorithms. In: Proceeding of the IEEE International Symposium on Computer Aid Control System Design, Hawai, USA (1999) Google Scholar
  13. 13.
    Huang, K.S., Kent, W., Wu, Q.H., Turner, D.R.: Effective identification of induction motor parameters based on fewer measurements. IEEE Trans. Energy Conv. 17(1), 55–60 (2002) CrossRefGoogle Scholar
  14. 14.
    Kia, S.H., Henao, H., Capolino, G.-A.: A high-resolution frequency estimation method for three-phase induction machine fault detection. IEEE Trans. Indust. Electron. 54(4), 2305–2314 (2007) CrossRefGoogle Scholar
  15. 15.
    Marques Cardoso, A.J., Cruz, S.M.A., Fonseca, D.S.B.: Inter-turn stator winding fault diagnosis in three-phase induction motors’ by Park’s vector approach. IEEE Trans. Energy Conv. 14(3), 595–598 (1999) CrossRefGoogle Scholar
  16. 16.
    Nandi, S., Toliyat, H.A., Li, X.: Condition monitoring and fault diagnosis of electrical motors—a review. IEEE Trans. Energy Conv. 20(4), 719–729 (2005) CrossRefGoogle Scholar
  17. 17.
    Nangsue, P., Pillay, P., Conry, S.E.: Evolutionary algorithm for industrial motor parameter determination. IEEE Trans. Energy Conv. 14(3), 447–453 (1999) CrossRefGoogle Scholar
  18. 18.
    Tallam, R.M., Habetler, T.G., Harley, R.G.: Stator winding turn-fault detection for closed-loop induction motor drives. IEEE Trans. Indust. Appl. 39(3), 720–724 (2003) CrossRefGoogle Scholar
  19. 19.
    Treetrong, J., Sinha, J.K., Gu, F., Ball, A.D.: A novel model parameter estimation of an induction motor using genetic algorithm. In: Proceeding of the 10th 2008 IASTED Signal and Image Conference, SIP 2008, Kailua-Kona, HI, USA, 18–20 August 2008, pp. 623–715 (2008) Google Scholar
  20. 20.
    Treetrong, J.: Fault detection and diagnosis of induction motors based on higher-order spectrum. In: Lecture Notes in Engineering and Computer Science: Proceedings of the International MultiConference of Engineers and Computer Scientists 2010, IMECS 2010, Hong Kong, 17–19 March 2010, pp. 1092–1096 (2010) Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of Teacher Training in Mechanical Engineering, Faculty of Technical EducationKing Mongkut’s University of TechnologyNorth Bangkok, Pibul-Songklarm, BangkokThailand

Personalised recommendations