Skip to main content

Modeling the Vestibular Nucleus

  • Chapter
  • 784 Accesses

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 70))

Abstract

In recent years the vestibular-sympathetic reflex has received an increasing amount of attention due to the role it could play in the human organism in different types of scenarios. Despite this, quantitative models of this reflex mechanism are still lacking. In this context, the current paper aims at taking a first step towards the modeling of the vestibular-sympathetic reflex by developing a model of the Vestibular Nucleus – the central part of the vestibular-sympathetic reflex. After a careful analysis of the limitations and uncertainties of the available experimental data from the literature, a three step modeling methodology for the Vestibular Nucleus is presented. After a description of the operations involved in each step, in the end, some preliminary results are shown.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Carter, J.R., Chester, A.R.: Sympathetic responses to vestibular activation in humans. Am. J. Physiol. Integr. Comp. Physiol. 294, R681–R688 (2008)

    Article  Google Scholar 

  2. Radtke, A., Popov, K., Bronstein, A.M., Gresty, M.A.: Vestibulo-autonomic control in man: Short- and long-latency vestibular effects on cardiovascular function. J. Vest. Res. 13(1), 25–37 (2003)

    Google Scholar 

  3. Olufsen, M., Ottesen, J., Tran, H., Lipsitz, L., Novak, V.: Modeling baroreflex regulation of heart rate during orthostatic stress. Am. J. Physiol. Reg. Integr. Comp. Physiol. 291, R1355–R1368 (2006)

    Article  Google Scholar 

  4. Young, L.R., Meiry, J.L.: A revised dynamic otolith model. Aerospace Med. 39, 606–608 (1968)

    Google Scholar 

  5. Oliver, J., Coenen, M.D.: Modeling the vestibulo-ocular reflex and the cerebellum: analytical & computational approaches. PhD Thesis, University of California, San Diego (1999)

    Google Scholar 

  6. Roy, A., Iqbal, K.: Kinematic trajectory generation in a neuromusculoskeletal model with somatosensory and vestibular feedback. In: 6th IFAC Symposium on Modeling and Control in Biomedical Systems, Reins, September 2006

    Google Scholar 

  7. du Lac S., Lisberger, S.G.: Cellular processing of temporal information in medial vestibular nucleus neurons. J. Neurosci., 8000–8010 (1995)

    Google Scholar 

  8. Brodal, P.: The Central Nervous System: Structure and Function, 3rd edn. Oxford University Press, London (2004)

    Google Scholar 

  9. Raisch, J., Francis, B.A.: Modeling Deterministic Uncertainty. The Control Handbook, CRC Press, Boca Raton (1996)

    Google Scholar 

  10. Uno, A., Idoux, E., Beraneck, M., Vidal, P.-P., Moore, L.E., Wilson, V.J., Vibert, N.: Static and dynamic membrane properties of lateral vestibular nucleus neurons in Guinea pig brain stem slices. J. Neurophysiol. 90, 1689–1703 (2003)

    Article  Google Scholar 

  11. Ris, L., Hachemaoui, M., Vibert, N., Godaux, E., Vidal, P.P., Moore, L.E.: Resonance of spike discharge modulation in neurons of the Guinea pig medial vestibular nucleus. J. Neurophysiol. 86, 703–716 (2001)

    Google Scholar 

  12. Ramachandran, R., Lisberger, S.G.: Transformation of vestibular signals into motor commands in the vestibuloocular reflex pathways of monkeys. J. Neurophysiol. 96, 1061–1074 (2006)

    Article  Google Scholar 

  13. Codrean, A., Ceregan, V., Dragomir, T.-L., Korodi, A.: Interpolative frequency characteristics generators for the vestibular nucleus activity. In: Lecture Notes in Engineering and Computer Science: Proceedings of the International MultiConference of Engineers and Computer Scientists 2010, IMECS 2010, Hong Kong, 17–19 March 2010, pp. 195–199 (2010)

    Google Scholar 

  14. Korodi, A., Ceregan, V., Dragomir, T.-L., Codrean, A.: A continuous-time dynamical model for the vestibular nucleus. In: IFMBE Proceedings, XII Mediterranean Conference on Medical and Biological Engineering and Computing, Chalkidiki, pp. 627–630 (2010)

    Google Scholar 

  15. Ceregan, V., Korodi, A., Dragomir, T.-L., Codrean, A.: An interpolative based dynamical model for the vestibular nucleus. In: ICCC-CONTI Proc., Timisoara, pp. 31–36 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandru Codrean .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Codrean, A., Korodi, A., Dragomir, TL., Ceregan, V. (2011). Modeling the Vestibular Nucleus. In: Ao, SI., Castillo, O., Huang, X. (eds) Intelligent Control and Computer Engineering. Lecture Notes in Electrical Engineering, vol 70. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0286-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-0286-8_24

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-0285-1

  • Online ISBN: 978-94-007-0286-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics