Advertisement

Possible Applications of Navigation Tools in Tilings of Hyperbolic Spaces

  • Maurice MargensternEmail author
Chapter
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 70)

Abstract

This paper introduces a method of navigation in a large family of tilings of the hyperbolic plane and looks at the question of possible applications in the light of the few ones which were already obtained. (This paper is a revised and slightly extended version of a paper presented by the author at IMECS’2010, see Margenstern (Proceedings of the International MultiConference of Engineers and Computer Scientists 2010, pp. 367–382, 2010).)

Keywords

Hyperbolic tilings Cellular automata Applications 

References

  1. 1.
    Chelghoum, K., Margenstern, M., Martin, B., Pecci, I.: Palette hyperbolique: un outil pour interagir avec des ensembles de données (Hyperbolic chooser: a tool to interact with data sets, in French). In: IHM’2004, Namur (2004) Google Scholar
  2. 2.
    Iwamoto, Ch., Margenstern, M.: Time and space complexity classes of hyperbolic cellular automata. IEICE Trans. Inform. Syst. 387-D(3), 700–707 (2004) Google Scholar
  3. 3.
    Iwamoto, Ch., Margenstern, M., Morita, K., Worsch, Th.: Polynomial time cellular automata in the hyperbolic plane accept exactly the PSPACE languages. In: SCI’2002 (2002) Google Scholar
  4. 4.
    Margenstern, M.: New tools for cellular automata in the hyperbolic plane. J. Universal Comput. Sci. 6(12), 1226–1252 (2000) MathSciNetzbMATHGoogle Scholar
  5. 5.
    Margenstern, M.: Implementing cellular automata on the triangular grids of the hyperbolic plane for new simulation tools. In: ASTC’2003, Orlando, March 29–April 4 (2003) Google Scholar
  6. 6.
    Margenstern, M.: Can hyperbolic geometry be of help for P systems? Lect. Notes Comput. Sci. 2933, 240–249 (2004) CrossRefGoogle Scholar
  7. 7.
    Margenstern, M.: A new way to implement cellular automata on the penta- and heptagrids. J. Cell. Autom. 1(1), 1–24 (2006) MathSciNetzbMATHGoogle Scholar
  8. 8.
    Margenstern, M.: On the communication between cells of a cellular automaton on the penta- and heptagrids of the hyperbolic plane. J. Cell. Autom. 1(3), 213–232 (2006) MathSciNetzbMATHGoogle Scholar
  9. 9.
    Margenstern, M.: Cellular Automata in Hyperbolic Spaces, vol. 1: Theory. Old City Publishing, Philadelphia (2007), 422 p Google Scholar
  10. 10.
    Margenstern, M.: Cellular Automata in Hyperbolic Spaces, vol. 2: Theory. Old City Publishing, Philadelphia (2008), 360 p Google Scholar
  11. 11.
    Margenstern, M.: A uniform and intrinsic proof that there are universal cellular automata in hyperbolic spaces. J. Cell. Autom. 3(2), 157–180 (2008) MathSciNetzbMATHGoogle Scholar
  12. 12.
    Margenstern, M.: Universal cellular automata in hyperbolic spaces. In: 13th WSEAS International Conference on Computers, Rodos, July 23–25, pp. 83–89 (2009), ISBN 978-960-474-099-4 Google Scholar
  13. 13.
    Margenstern, M.: Navigation in tilings of the hyperbolic plane and possible applications. In: Lecture Notes in Engineering and Computer Science: Proceedings of the International MultiConference of Engineers and Computer Scientists 2010, IMECS 2010, Hong Kong, 17–19 March 2010, pp. 376–382 (2010) Google Scholar
  14. 14.
    Margenstern, M., Morita, K.: A polynomial solution for 3-SAT in the space of cellular automata in the hyperbolic plane. J. Universal Comput. Syst. 5, 563–573 (1999) MathSciNetzbMATHGoogle Scholar
  15. 15.
    Margenstern, M., Song, Y.: A universal cellular automaton on the ternary heptagrid. Electron. Notes Theoret. Comput. Sci. 223, 167–185 (2008) CrossRefGoogle Scholar
  16. 16.
    Margenstern, M., Song, Y.: A new universal cellular automaton on the pentagrid. Parallel Process. Lett. 19(2), 227–246 (2009) MathSciNetCrossRefGoogle Scholar
  17. 17.
    Margenstern, M., Martin, B., Umeo, H., Yamano, S., Nishioka, K.: A proposal for a Japanese keyboard on cellular phones. Lect. Notes Comput. Sci. 5191, 299–306 (2008) CrossRefGoogle Scholar
  18. 18.
    Martin, B.: VirHKey: a VIRtual Hyperbolic KEYboard with gesture interaction and visual feedback for mobile devices. In: Mobile HCI, pp. 99–106 (2005) Google Scholar
  19. 19.
    Stewart, I.: A subway named Turing. Mathematical recreations. Sci. Am. 90–92 (1994) Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.LITA, EA 3097, UFR-MIMUniversité Paul Verlaine-MetzMetz CédexFrance

Personalised recommendations