Skip to main content

Study of TRP Channels by Automated Patch Clamp Systems

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 704))

Abstract

Ion channels are responsible for the permeation of ions across the membrane and their central role in cellular physiology is well established. Historically, the direct study of ion channels has been considered technically challenging. As such, a significant barrier to drug discovery for ion channels has been the low throughput of high quality electrophysiological data. The emergence of automated high throughput platforms for studying ion channel kinetics and pharmacology has lowered this barrier. Ion channels are now recognized as increasingly important drug targets and a diverse range of ion channels are implicated in a variety of drug discovery and cardiac safety assessment programs. The TRP (Transient Receptor Potential) superfamily of ion channels play a crucial role in a broad range of sensory functions including vision, taste, olfaction, hearing, touch, pain and thermosensation. Many of the TRP channels are polymodal in their activation and deactivation mechanisms and even with conventional patch clamp electrophysiology, the TRP channels are considered to be a very complex target class. Here we present an update on the significant progress made on the TRP receptor assays with the available automated patch clamp systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391:85–100

    Article  CAS  PubMed  Google Scholar 

  2. Dunlop J, Bowlby M, Peri R, Vasilyev D, Arias R (2008) High-throughput electrophysiology: an emerging paradigm for ion-channel screening and physiology. Nat Rev Drug Discov 7:358–368

    Article  CAS  PubMed  Google Scholar 

  3. Korsgaard MP, Strobaek D, Christophersen P (2009) Automated planar electrode electrophysiology in drug discovery: examples of the use of QPatch in basic characterization and high content screening on Na(v), K(Ca)2.3, and K(v)11.1 channels. Comb Chem High Throughput Screen 12:51–63

    Article  CAS  PubMed  Google Scholar 

  4. Mathes C, Friis S, Finley M, Liu Y (2009) QPatch: the missing link between HTS and ion channel drug discovery. Comb Chem High Throughput Screen 12:78–95

    Article  CAS  PubMed  Google Scholar 

  5. John VH, Dale TJ, Hollands EC, Chen MX, Partington L, Downie DL, Meadows HJ, Trezise DJ (2007) Novel 384-well population patch clamp electrophysiology assays for Ca2+-activated K+ channels. J Biomol Screen 12:50–60

    Article  CAS  PubMed  Google Scholar 

  6. Friis S, Mathes C, Sunesen M, Bowlby MR, Dunlop J (2009) Characterization of compounds on nicotinic acetylcholine receptor alpha7 channels using higher throughput electrophysiology. J Neurosci Methods 177:142–148

    Article  CAS  PubMed  Google Scholar 

  7. Clark G, Todd D, Liness S, Maidment SA, Dowler S, Southan A (2005) Expression and characterization of a two pore potassium channel in HEK293 cells using different assay platforms (Abstract). Proceedings of the British Pharmacological Society at http://www.pA2online.org/abstracts/vol3Issue4abst105P.pdf

  8. Lee YT, Vasilyev DV, Shan QJ, Dunlop J, Mayer S, Bowlby MR (2008) Novel pharmacological activity of loperamide and CP-339,818 on human HCN channels characterized with an automated electrophysiology assay. Eur J Pharmacol 581:97–104

    Article  CAS  PubMed  Google Scholar 

  9. Schroder RL, Friis S, Sunesen M, Mathes C, Willumsen NJ (2008) Automated patch-clamp technique: increased throughput in functional characterization and in pharmacological screening of small-conductance Ca2+ release-activated Ca2+ channels. J Biomol Screen 13:638–647

    Article  PubMed  Google Scholar 

  10. Montell C, Rubin GM (1989) Molecular characterization of the Drosophila trp locus: a putative integral membrane protein required for phototransduction. Neuron 2:1313–1323

    Article  CAS  PubMed  Google Scholar 

  11. Venkatachalam K, Montell C (2007) TRP channels. Annu Rev Biochem 76:387–417

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Nilius B (2007) TRP channels in disease. Biochim Biophys Acta 1772:805–812

    Article  CAS  PubMed  Google Scholar 

  13. Clapham DE (2003) TRP channels as cellular sensors. Nature 426:517–524

    Article  CAS  PubMed  Google Scholar 

  14. Barritt G, Rychkov G (2005) TRPs as mechanosensitive channels. Nat Cell Biol 7:105–107

    Article  CAS  PubMed  Google Scholar 

  15. Goswami C, Islam S (2010) TRP Channels. What’s happening? reflections in the wake of the 2009 TRP meeting, Karolinska Institutet, Stockholm. Channels 4:1–12

    Article  Google Scholar 

  16. Hammami S, Willumsen NJ, Olsen HL, Morera FJ, Latorre R, Klaerke DA (2009) Cell volume and membrane stretch independently control K+ channel activity. J Physiol 587:2225–2231

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Dhaka A, Viswanath V, Patapoutian A (2006) Trp ion channels and temperature sensation. Annu Rev Neurosci 29:135–161

    Article  CAS  PubMed  Google Scholar 

  18. McPate M, Lilley S, Gosling M, Friis S, Jacobsen RB, Tranter P (2010) Evaluation of the QPatch HT and HTX systems as methods for ion channel screening (Abstract). Biophys J 98(3):340a–340a

    Google Scholar 

  19. Finkel A, Wittel A, Yang N, Handran S, Hughes J, Costantin J (2006) Population patch clamp improves data consistency and success rates in the measurement of ionic currents. J Biomol Screen 11:488–496

    Article  CAS  PubMed  Google Scholar 

  20. Caterina MJ (2007) Chemical biology: sticky spices. Nature 445:491–492

    Article  CAS  PubMed  Google Scholar 

  21. Bandell M, Story GM, Hwang SW, Viswanath V, Eid SR, Petrus MJ, Earley TJ, Patapoutian A (2004) Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron 41:849–857

    Article  CAS  PubMed  Google Scholar 

  22. Jordt SE, Bautista DM, Chuang HH, McKemy DD, Zygmunt PM, Hogestatt ED, Meng ID, Julius D (2004) Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 427:260–265

    Article  CAS  PubMed  Google Scholar 

  23. Macpherson LJ, Geierstanger BH, Viswanath V, Bandell M, Eid SR, Hwang S, Patapoutian A (2005) The pungency of garlic: activation of TRPA1 and TRPV1 in response to allicin. Curr Biol 15:929–934

    Article  CAS  PubMed  Google Scholar 

  24. Klionsky L, Tamir R, Gao B, Wang W, Immke DC, Nishimura N, Gavva NR (2007) Species-specific pharmacology of Trichloro(sulfanyl)ethyl benzamides as transient receptor potential ankyrin 1 (TRPA1) antagonists. Mol Pain 3:39

    Article  PubMed Central  PubMed  Google Scholar 

  25. Akopian AN, Ruparel NB, Jeske NA, Hargreaves KM (2007) Transient receptor potential TRPA1 channel desensitization in sensory neurons is agonist dependent and regulated by TRPV1-directed internalization. J Physiol 583:175–193

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Zurborg S, Yurgionas B, Jira JA, Caspani O, Heppenstall PA (2007) Direct activation of the ion channel TRPA1 by Ca2+. Nat Neurosci 10:277–279

    Article  CAS  PubMed  Google Scholar 

  27. Wes PD, Chevesich J, Jeromin A, Rosenberg C, Stetten G, Montell C (1995) TRPC1, a human homolog of a Drosophila store-operated channel. Proc Natl Acad Sci USA 92:9652– 9656

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Hofmann T, Obukhov AG, Schaefer M, Harteneck C, Gudermann T, Schultz G (1999) Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature 397:259–263

    Article  CAS  PubMed  Google Scholar 

  29. DeHaven WI, Jones BF, Petranka JG, Smyth JT, Tomita T, Bird GS, Putney JW Jr (2009) TRPC channels function independently of STIM1 and Orai1. J Physiol 587:2275–2298

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Yuan JP, Zeng W, Huang GN, Worley PF, Muallem S (2007) STIM1 heteromultimerizes TRPC channels to determine their function as store-operated channels. Nat Cell Biol 9:636–645

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Li J, Sukumar P, Milligan CJ, Kumar B, Ma ZY, Munsch CM, Jiang LH, Porter KE, Beech DJ (2008) Interactions, functions, and independence of plasma membrane STIM1 and TRPC1 in vascular smooth muscle cells. Circ Res 103:e97–e104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Massullo P, Sumoza-Toledo A, Bhagat H, Partida-Sanchez S (2006) TRPM channels, calcium and redox sensors during innate immune responses. Semin Cell Dev Biol 17:654–666

    Article  CAS  PubMed  Google Scholar 

  33. Hara Y, Wakamori M, Ishii M, Maeno E, Nishida M, Yoshida T, Yamada H, Shimizu S, Mori E, Kudoh J, Shimizu N, Kurose H, Okada Y, Imoto K, Mori Y (2002) LTRPC2 Ca2+-permeable channel activated by changes in redox status confers susceptibility to cell death. Mol Cell 9:163–173

    Article  CAS  PubMed  Google Scholar 

  34. Kolisek M, Beck A, Fleig A, Penner R (2005) Cyclic ADP-ribose and hydrogen peroxide synergize with ADP-ribose in the activation of TRPM2 channels. Mol Cell 18:61–69

    Article  CAS  PubMed  Google Scholar 

  35. Sano Y, Inamura K, Miyake A, Mochizuki S, Yokoi H, Matsushime H, Furuichi K (2001) Immunocyte Ca2+ influx system mediated by LTRPC2. Science 293:1327–1330

    Article  CAS  PubMed  Google Scholar 

  36. Togashi K, Hara Y, Tominaga T, Higashi T, Konishi Y, Mori Y, Tominaga M (2006) TRPM2 activation by cyclic ADP-ribose at body temperature is involved in insulin secretion. EMBO J 25:1804–1815

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Patel S, Docampo R (2009) In with the TRP channels: intracellular functions for TRPM1 and TRPM2. Sci Signal 2:e69

    Article  Google Scholar 

  38. Hill K, McNulty S, Randall AD (2004) Inhibition of TRPM2 channels by the antifungal agents clotrimazole and econazole. Naunyn Schmiedebergs Arch Pharmacol 370:227–237

    Article  CAS  PubMed  Google Scholar 

  39. Naziroglu M, Brandsch C (2006) Dietary hydrogenated soybean oil affects lipid and vitamin E metabolism in rats. J Nutr Sci Vitaminol (Tokyo) 52:83–88

    Article  CAS  Google Scholar 

  40. Grimm C, Kraft R, Schultz G, Harteneck C (2005) Activation of the melastatin-related cation channel TRPM3 by D-erythro-sphingosine [corrected]. Mol Pharmacol 67:798–805

    Article  CAS  PubMed  Google Scholar 

  41. Wagner TF, Loch S, Lambert S, Straub I, Mannebach S, Mathar I, Dufer M, Lis A, Flockerzi V, Philipp SE, Oberwinkler J (2008) Transient receptor potential M3 channels are ionotropic steroid receptors in pancreatic beta cells. Nat Cell Biol 10:1421–1430

    Article  CAS  PubMed  Google Scholar 

  42. Naylor J, Milligan CJ, Zeng F, Jones C, Beech DJ (2008) Production of a specific extracellular inhibitor of TRPM3 channels. Br J Pharmacol 155:567–573

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Hofmann T, Chubanov V, Gudermann T, Montell C (2003) TRPM5 is a voltage-modulated and Ca(2+)-activated monovalent selective cation channel. Curr Biol 13:1153–1158

    Article  CAS  PubMed  Google Scholar 

  44. Colburn RW, Lubin ML, Stone DJ Jr, Wang Y, Lawrence D, D‘Andrea MR, Brandt MR, Liu Y, Flores CM, Qin N (2007) Attenuated cold sensitivity in TRPM8 null mice. Neuron 54:379–386

    Article  CAS  PubMed  Google Scholar 

  45. Takashima Y, Daniels RL, Knowlton W, Teng J, Liman ER, McKemy DD (2007) Diversity in the neural circuitry of cold sensing revealed by genetic axonal labeling of transient receptor potential melastatin 8 neurons. J.Neurosci 27:14147–14157

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Beck EJ, Hutchinson TL, Qin N, Flores CM, Liu Y (2010) Development and validation of a secondary screening assay for TRPM8 antagonists using QPatch HT. Assay Drug Dev Technol 8:63–72

    Article  CAS  PubMed  Google Scholar 

  47. Tominaga M, Caterina MJ (2004) Thermosensation and pain. J Neurobiol 61:3–12

    Article  PubMed  Google Scholar 

  48. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824

    Article  CAS  PubMed  Google Scholar 

  49. Patapoutian A, Tate S, Woolf CJ (2009) Transient receptor potential channels: targeting pain at the source. Nat Rev Drug Discov 8:55–68

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Raisinghani M, Pabbidi RM, Premkumar LS (2005) Activation of transient receptor potential vanilloid 1 (TRPV1) by resiniferatoxin. J Physiol 567:771–786

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Roberts LA, Connor M (2006) TRPV1 antagonists as a potential treatment for hyperalgesia. Recent Pat CNS Drug Discov 1:65–76

    Article  CAS  PubMed  Google Scholar 

  52. Jiang X (2010) Assay of TRPV4 Channel using PatchXpress 7000A and Ionworks Quattro Systems

    Google Scholar 

  53. Southan A, Clark G (2009) Recent advances in electrophysiology-based screening technology and the impact upon ion channel discovery research. Methods Mol Biol 565:187–208

    Article  CAS  PubMed  Google Scholar 

  54. Andersson DA, Chase HW, Bevan S (2004) TRPM8 activation by menthol, icilin, and cold is differentially modulated by intracellular pH. J Neurosci 24:5364–5369

    Article  CAS  PubMed  Google Scholar 

  55. Behrendt HJ, Germann T, Gillen C, Hatt H, Jostock R (2004) Characterization of the mouse cold-menthol receptor TRPM8 and vanilloid receptor type-1 VR1 using a fluorometric imaging plate reader (FLIPR) assay. Br J Pharmacol 141:737–745

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The QPatch results presented in this review have been generated by many scientists at Sophion Bioscience. We would especially like to thank Rikke L. Schrøder and Hervør L. Olsen for their contribution with data: Dorthe Nielsen is acknowledged for her expert technical assistance. M. Knirke Jensen and Søren Friis are thanked for providing data and valuable critical input to this manuscript. Many thanks also to Chris Mathes for being an inspirator and scientific mentor during both data and manuscript generation.

We thank AstraZeneca, Sweden, for generously proving the TRPA1, TRPV1, and TRPM8 cell lines. The scientists at Novartis, UK, Pamela Tranter, Mark McPate and Martin Gosling are thanked for sharing their data on TRPM2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morten Sunesen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Sunesen, M., Jacobsen, R.B. (2011). Study of TRP Channels by Automated Patch Clamp Systems. In: Islam, M. (eds) Transient Receptor Potential Channels. Advances in Experimental Medicine and Biology, vol 704. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0265-3_5

Download citation

Publish with us

Policies and ethics