Skip to main content

TRP Channels in Urinary Bladder Mechanosensation

  • Chapter
  • First Online:
Transient Receptor Potential Channels

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 704))

Abstract

The lower urinary tract has two main functions: storage and periodic elimination of urine [1]. These functions are controlled by complex neural circuits of reflex pathways located in the brain, the spinal cord and the periphery. The lower urinary tract constantly sends mechanosensory information to the central nervous system via afferent pathway. These signals generate sensation and trigger voiding responses. Alterations in afferent activity may lead to lower urinary tract dysfunction. The increase of afferent excitability is one of mechanisms for overactive bladder syndrome and for painful bladder syndrome [1, 2]. However, the precise mechanisms by which mechanical stimuli excite bladder afferents remain unclear.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. de Groat WC (2006) Integrative control of the lower urinary tract: preclinical perspective. Br J Pharmacol 147:S25–S40

    PubMed Central  PubMed  Google Scholar 

  2. Yoshimura N, Seki S, Chancellor MB, de Groat WC, Ueda T (2002) Targeting afferent hyperexcitability for therapy of the painful bladder syndrome. Urology 59(suppl 5A):61–67

    PubMed  Google Scholar 

  3. Lewin GR, Lu Y, Park TJ (2004) A plethora of painful molecules. Curr Opin Neurobiol 14:443–449

    CAS  PubMed  Google Scholar 

  4. Gillespie PG, Walker RG (2001) Molecular basis of mechanosensory transduction. Nature 413:194–202

    CAS  PubMed  Google Scholar 

  5. Voets T, Talavera K, Owsianik G, Nilius B (2005) Sensing with TRP channels. Nat Chem Biol 1:85–92

    CAS  PubMed  Google Scholar 

  6. Christensen AP, Corey DP (2007) TRP channels in mechanosensation: direct or indirect activation? Nat Rev Neurosci 8:510–521

    CAS  PubMed  Google Scholar 

  7. Birder LA (2007) TRPs in bladder diseases. Biochim Biophys Acta 1772:879–884

    PubMed Central  CAS  PubMed  Google Scholar 

  8. Araki I, Du S, Kobayashi H, Sawada F, Mochizuki T, Zakoji H, Takeda M (2008) Roles of mechanosensitive ion channels in bladder sensory transduction and overactive bladder. Int J Urol 15:681–687

    PubMed  Google Scholar 

  9. Everaerts W, Gevaert T, Nilius B, De Ridder D (2008) On the origin of bladder sensing: Tr(i)ps in urology. Neurourol Urodyn 27:264–273

    CAS  PubMed  Google Scholar 

  10. Burnstock G (2001) Purine-mediated signalling in pain and visceral perception. Trends Pharmacol Sci 22:182–188

    CAS  PubMed  Google Scholar 

  11. Tsunozaki M, Bautista DM (2009) Mammalian somatosensory mechanotransduction. Curr Opin Neurobiol 19:362–369

    CAS  PubMed  Google Scholar 

  12. Häbler HJ, Jänig W, Koltzenburg M (1990) Activation of unmyelinated afferent fibres by mechanical stimuli and inflammation of the urinary bladder in the cat. J Physiol 425:545–562

    PubMed Central  PubMed  Google Scholar 

  13. Häbler HJ, Jänig W, Koltzenburg M (1993) Myelinated primary afferents of the sacral spinal cord responding to slow filling and distension of the cat urinary bladder. J Physiol 463: 449–460

    PubMed Central  PubMed  Google Scholar 

  14. Sengupta JN, Gebhart GF (1994) Mechanosensitive properties of pelvic nerve afferent fibers innervating the urinary bladder of the rat. J Neurophysiol 72:2420–2430

    CAS  PubMed  Google Scholar 

  15. Shea VK, Cai R, Crepps B, Mason JL, Perl ER (2000) Sensory fibers of pelvic nerve innervating the rat’s urinary bladder. J Neurophysiol 84:1924–1933

    CAS  PubMed  Google Scholar 

  16. Gabella G, Davis C (1998) Distribution of afferent axons in the bladder of rats. J Neurocytol 27:141–155

    CAS  PubMed  Google Scholar 

  17. Xu L, Gebhart GF (2008) Characterization of mouse lumbar splanchnic and pelvic nerve urinary bladder mechanosensory afferents. J Neurophysiol 99:244–253

    PubMed Central  PubMed  Google Scholar 

  18. Zagorodnyuk VP, Gibbins IL, Costa M, Brookes SJH, Gregory SJ (2007) Properties of the major classes of mechanoreceptors in the guinea pig bladder. J Physiol 585(1):147–163

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Yu Y, de Groat WC (2008) Sensitization of pelvic afferent nerves in the in vitro rat urinary bladder-pelvic nerve preparation by purinergic agonists and cyclophosphamide pretreatment. Am J Physiol Renal Physiol 294:F1146–F1156

    PubMed Central  CAS  PubMed  Google Scholar 

  20. Zagorodnyuk VP, Brookes SJH, Spencer NJ, Gregory S (2009) Mechanotransduction and chemosensitivity of two major classes of bladder afferents with endings in the vicinity to the urothelium. J Physiol 587(14):3523–3538

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Moore KH, Gilpin SA, Dixon JS, Richmond DH, Sutherst JR (1992) Increase in presumptive sensory nerves of the urinary bladder in idiopathic detrusor instability. Brit J Urol 70: 370–372

    CAS  PubMed  Google Scholar 

  22. Welsh MJ, Price MP, Xie J (2002) Biochemical basis of touch perception: mechanosensory function of degenerin/epithelial Na+ channels. J Biol Chem 277:2369–2372

    CAS  PubMed  Google Scholar 

  23. Moran MM, Xu H, Clapham DE (2004) TRP ion channels in the nervous system. Curr Opin Neurobiol 14:362–369

    CAS  PubMed  Google Scholar 

  24. Smet PJ, Moore KH, Jonavicius J (1997) Distribution and colocalization of calcitonin gene-related peptide, tachykinins, and vasoactive intestinal peptide in normal and idiopathic unstable human urinary bladder. Lab Invest 77:37–49

    CAS  PubMed  Google Scholar 

  25. Maggi CA, Meli A (1988) The sensory-efferent function of capsaicin-sensitive sensory neurons. Gen Pharmacol 19:1–43

    CAS  PubMed  Google Scholar 

  26. Meini S, Maggi CA (1994) Evidence for a capsaicin-sensitive, tachykinin-mediated, component in the NANC contraction of the rat urinary bladder to nerve stimulation. Br J Pharmacol 112:1123–1131

    PubMed Central  CAS  PubMed  Google Scholar 

  27. Andersson KE (2002) Bladder activation: afferent mechanisms. Urology 59(suppl 5A): 43–50

    PubMed  Google Scholar 

  28. Patacchini R, Santicioli P, Giuliani S, Maggi CA (2005) Pharmacological investigation of hydrogen sulfide (H2S) contractile activity in rat detrusor muscle. Eur J Pharmacol 509: 171–177

    CAS  PubMed  Google Scholar 

  29. Birder LA (2005) More than just a barrier: urothelium as a drug target for urinary bladder pain. Am J Physiol Renal Physiol 289:F489–F495

    CAS  PubMed  Google Scholar 

  30. Ferguson DR, Kennedy I, Burton TJ (1997) ATP is released from rabbit urinary bladder epithelial cells by hydrostatic pressure changes-a possible sensory mechanism? J Physiol 505:503–511

    PubMed Central  CAS  PubMed  Google Scholar 

  31. Birder LA, Nakamura Y, Kiss S, Nealen ML, Barrick S, Kanai AJ, Wang E, Ruiz G, de Groat WC, Apodaca G, Watkins S, Caterina MJ (2002) Altered urinary bladder function in mice lacking the vanilloid receptor TRPV1. Nat Neurosci 5:856–860

    CAS  PubMed  Google Scholar 

  32. Yoshida M, Inadome A, Maeda Y, Satoji Y, Masunaga K, Sugiyama Y, Murakami S (2006) Non-neuronal cholinergic system in human bladder urothelium. Urology 67:425–430

    PubMed  Google Scholar 

  33. Sabirov RZ, Okada Y (2004) ATP-conducting maxi-anion channel: a new player in stress-sensory transduction. Jpn J Physiol 54:7–14

    CAS  PubMed  Google Scholar 

  34. Rong W, Spyer KM, Burnstock G (2002) Activation and sensitisation of low and high threshold afferent fibres mediated by P2X receptors in the mouse urinary bladder. J Physiol 541:591–600

    PubMed Central  CAS  PubMed  Google Scholar 

  35. Vlaskovska M, Kasakov L, Rong W, Bodin P, Bardini M, Cockayne DA, Ford APDW, Burnstock G (2001) P2X 3 knock-out mice reveal a major sensory role for urothelially released ATP. J Neurosci 21:5670–5677

    Google Scholar 

  36. Cockayne DA, Dunn PM, Zhaong Y, Rong W, Hamilton SG, Knight GE, Ruan HZ, Ma B, Yip P, Nunn P, McMahon SB, Burnstock G, Ford APDW (2005) P2X2 knockout mice and P2X2/P2X3 double knockout mice reveal a role for the P2X2 receptor subunit in mediating multiple sensory effects of ATP. J Physiol 567(2):621–639

    PubMed Central  CAS  PubMed  Google Scholar 

  37. Burnstock G (2009) Purinergic mechanosensory transduction and visceral pain. Mol Pain 5:69

    PubMed Central  PubMed  Google Scholar 

  38. Hedlund P, Streng T, Lee T, Andersson KL (2007) Effects of tolterodine on afferent neurotransmission in normal and resiniferatoxin treated conscious rats. J Urol 178:326–331

    CAS  PubMed  Google Scholar 

  39. Iijima K, De Wachter S, Wyndaele JJ (2007) Effects of the M3 receptor selective muscarinic antagonist darifenacin on bladder afferent activity of the rat pelvic nerve. Eur Urol 52: 842–849

    PubMed  Google Scholar 

  40. Bernardini N, Sauer SK, Haberberger R, Fischer MJM, Reeh PW (2001) Excitatory nicotinic and desensitizing muscarinic (M2) effects on C-nociceptors in isolated rat skin. J Neurosci 21:3295–3302

    CAS  PubMed  Google Scholar 

  41. Mukerji G, Yiangou Y, Grogono J, Underwood J, Agarwal SK, Khullar V, Anand P (2006) Localization of M2 and M3 muscarinic receptors in human bladder disorders and their clinical correlations. J Urol 176:367–373

    CAS  PubMed  Google Scholar 

  42. Pradidarcheep W, Stallen J, Labruyere WT, Dabhoiwala NF, Michel MC, Lamers WH (2008) Lack of specificity of commercially available antisera: better specifications needed. J Histochem Cytochem 56:1099–1111

    PubMed Central  CAS  PubMed  Google Scholar 

  43. Jositsch G, Papadakis T, Haberberger RV, Wolff M, Wess J, Kummer W (2009) Suitability of muscarinic acetylcholine receptor antibodies for immunohistochemistry evaluated on tissue sections of receptor gene-deficient mice. Naunyn Schmiedebergs Arch Pharmacol 379: 389–395

    PubMed Central  CAS  PubMed  Google Scholar 

  44. Yoshimura N, Kaiho Y, Miyazato M, Yunoki T, Tai C, Chancellor MB, Tyagi P (2007) Therapeutic receptor targets for lower urinary tract dysfunction. Naunyn Schmiedebergs Arch Pharmacol 377:437–448

    PubMed  Google Scholar 

  45. Birder LA (2010) Urothelial signaling. Auton Neurosci 153:33–40

    PubMed Central  CAS  PubMed  Google Scholar 

  46. Kullman FA, Artim DE, Birder LA, de Groat WC (2008) Activation of muscarinic receptors in rat bladder sensory pathways alters reflex bladder activity. J Neurosci 28:1977–1987

    Google Scholar 

  47. Chopra B, Gever J, Barrick SR, Hanna-Mitchell AT, Beckel JM, Ford APDW, Birder LA (2008) Expression and function of rat urothelial P2Y receptors. Am J Physiol Renal Physiol 294:F821–F829

    PubMed Central  CAS  PubMed  Google Scholar 

  48. Wang X, Momota Y, Yanase H, Narumiya S, Maruyama T, Urothelium KM (2008) EP1 receptor facilitates the micturition reflex in mice. Biomed Res 29:105–111

    PubMed  Google Scholar 

  49. Girard BM, Wolf-Johnston A, Braas KM, Birder LA, May V, Vizzard MA (2008) PACAP-mediated ATP release from rat urothelium and regulation of PACAP/VIP and receptor mRNA in micturition pathways after cyclophosphamide (CYP)-induced cystitis. J Mol Neurosci 36:310–320

    PubMed Central  CAS  PubMed  Google Scholar 

  50. Sun Y, MaLossi J, Jacobs SC, Chai TC (2002) Effect of doxazosin on stretch-activated adenosine triphosphate release in bladder urothelial cells from patients with benign prostatic hyperplasia. Urology 60:351–356

    PubMed  Google Scholar 

  51. Ishihama H, Momota Y, Yanase H, Wang X, de Groat WC, Kawatani M (2006) Activation of alpha1D adrenergic receptors in the rat urothelium facilitates the micturition reflex. J Urol 175:358–364

    CAS  PubMed  Google Scholar 

  52. Yoshida M, Masunaga K, Nagata T, Maeda Y, Miyamoto Y, Kudoh J, Homma Y (2009) Attenuation of non-neuronal adenosine triphosphate release from human bladder mucosa by antimuscarinic agents. LUTS 1:88–92

    CAS  Google Scholar 

  53. Brading AF (2006) Spontaneous activity of lower urinary tract smooth muscles: correlation between ion channels and tissue function. J Physiol 570:13–22

    PubMed Central  CAS  PubMed  Google Scholar 

  54. Gillespie JI (2004) The autonomous bladder: a view of the origin of bladder overactivity and sensory urge. BJU Int 93:478–483

    CAS  PubMed  Google Scholar 

  55. Collins C, Klausner AP, Herrick B, Koo HP, Miner AS, Henderson SC, Ratz PH (2009) Potential for control of detrusor smooth muscle spontaneous rhythmic contraction by cyclooxygenase products released by interstitial cells of Cajal. J Cell Mol Med 13: 3236–3250

    PubMed  Google Scholar 

  56. Zagorodnyuk VP, Gregory S, Costa M, Brookes SJH, Tramontana M, Giuliani S, Maggi CA (2009) Spontaneous release of acetylcholine from autonomic nerves in the bladder. Br J Pharmacol 157:607–619

    PubMed Central  CAS  PubMed  Google Scholar 

  57. Hashitani H, Yanai Y, Suzuki H (2004) Role of interstitial cells and gap junctions in the transmission of spontaneous Ca2+ signals in detrusor smooth muscle of the guinea-pig urinary bladder. J Physiol 559(2):567–581

    PubMed Central  CAS  PubMed  Google Scholar 

  58. Drake MJ, Harvey IJ, Gillespie JI (2003) Autonomous activity in the isolated guinea pig bladder. Exp Physiol 88:19–30

    CAS  PubMed  Google Scholar 

  59. Gillespie JI (2005) A developing view of the origins of urgency: the importance of animal models. BJU Int 96(suppl 1):22–28

    PubMed  Google Scholar 

  60. McCarthy CJ, Zabbarova IV, Brumovsky PR, Gebhart GF, Kanai AJ (2009) Spontaneous contractions evoke afferent nerve firing in mouse bladders with detrusor overactivity. J Urol 181:1459–1466

    PubMed Central  PubMed  Google Scholar 

  61. Drake MJ, Hedlund P, Andersson KE, Brading AF, Hussain I, Fowler C, Landon DN (2003) Morphology, phenotype and ultrastructure of fibroblastic cells from normal and neuropathic human detrusor: absence of myofibroblast characteristics. J Urol 169:1573–1576

    PubMed  Google Scholar 

  62. Sanders KM (1996) A case for interstitial cells of Cajal as pacemakers and mediators of neurotransmission in the gastrointestinal tract. Gastroenterology 111:492–515

    CAS  PubMed  Google Scholar 

  63. Sergeant GP, Hollywood MA, McCloskey KD, Thornbury KD, McHale NG (2000) Specialised pacemaking cells in the rabbit urethra. J Physiol 526:359–366

    PubMed Central  CAS  PubMed  Google Scholar 

  64. McCloskey KD, Gurney AM (2002) Kit positive cells in the guinea pig bladder. J Urol 168:832–836

    PubMed  Google Scholar 

  65. Fry CH, Sui GP, Kanai AJ, Wu C (2007) The function of suburothelial myofibroblasts in the bladder. Neurourol Urodyn 26:914–919

    CAS  PubMed  Google Scholar 

  66. Sui GP, Fry CH (2004) Electrical characteristics of suburothelial cells isolated from the human bladder. J Urol 171:938–943

    CAS  PubMed  Google Scholar 

  67. Wu C, Sui GP, Fry CH (2004) Purinergic regulation of guinea pig suburothelial myofibroblasts. J Physiol 559:231–243

    PubMed Central  CAS  PubMed  Google Scholar 

  68. Grol S, Essers PBM, van Koeverringe GA, Martinez-Martinez P, de Vente J, Gillespie JI (2009) M3 muscarinic receptor expression on suburothelial interstitial cells. BJU Int 104:398–405

    CAS  PubMed  Google Scholar 

  69. Sui GP, Rothery S, Dupont E, Fry CH, Severs NJ (2002) Gap junctions and connexin expression in human suburothelial interstitial cells. BJU Int 90:118–129

    CAS  PubMed  Google Scholar 

  70. Wiseman OJ, Fowler CJ, Landon DN (2003) The role of the human bladder lamina propria myofibroblast. BJU Int 91:89–93

    CAS  PubMed  Google Scholar 

  71. Sui GP, Wu C, Fry CH (2008) Modulation of bladder myofibroblast activity: implications for bladder function. Am J Physiol Renal Physiol 295:F688–F697

    PubMed Central  CAS  PubMed  Google Scholar 

  72. Avelino A, Cruz F (2006) TRPV1 (vanilloid receptor) in the urinary tract: expression, function and clinical applications. Naunyn Schmiedebergs Arch Pharmacol 373:287–299

    CAS  PubMed  Google Scholar 

  73. Hwang AJ, Oh JM, Valtschanoff JG (2005) Expression of the vanilloid receptor TRPV1 in rat dorsal root ganglion neurons supports different roles of the receptor in visceral and cutaneous afferents. Brain Res 1047:261–266

    CAS  PubMed  Google Scholar 

  74. Birder LA, Kanai AJ, de Groat WC, Kiss S, Nealen ML, Burke NE, Dineley KE, Watkins A, Reynolds IJ, Caterina MJ (2001) Vanilloid receptor expression suggests a sensory role for urinary bladder epithelial cells. Proc Natl Acad Sci USA 98:13396–13401

    PubMed Central  CAS  PubMed  Google Scholar 

  75. Ost D, Roskams T, Van Der Aa F, De Ridder D (2002) Topography of the vanilloid receptor in the human bladder: more than just the nerve fibers. J Urol 168:293–297

    PubMed  Google Scholar 

  76. Lazzeri M, Vannucchi MG, Zardo C, Spinelli M, Beneforti P, Turini D, Faussone-Pellegrini MS (2004) Immunohistochemical evidence of vanilloid receptor 1 in normal human urinary bladder. Eur Urol 46:792–798

    CAS  PubMed  Google Scholar 

  77. Everaerts W, Sepulvera MR, Gavaert T, Roskams T, Nillius B, De Ridder D (2009) Where is TRPV1 expressed in the bladder, do see the real channel? Naunyn Schmiedebergs Arch Pharmacol 379:421–425

    CAS  PubMed  Google Scholar 

  78. Chancellor MB, de Groat WC (1999) Intravesical capsaicin and resiniferatoxin therapy: spicing up the ways to treat the overactive bladder. J Urol 162:3–11

    CAS  PubMed  Google Scholar 

  79. Tominaga M, Caterina MJ, Malmberg AB, Rosen TA, Gilbert H, Skinner K, Raumann BE, Basbaum AI, Julius D (1998) The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21:531–543

    CAS  PubMed  Google Scholar 

  80. Avelino A, Cruz C, Nagy I, Cruz F (2002) Vanilloid receptor 1 expression in the rat urinary tract. Neuroscience 109:787–798

    CAS  PubMed  Google Scholar 

  81. Vizzard MA (2000) Alterations in spinal cord Fos protein expression induced by bladder stimulation following cystitis. Am J Physiol Regul Integr Comp Physiol 278:R1027–R1039

    CAS  PubMed  Google Scholar 

  82. Dinis P, Charrus A, Avelino A, Yaqoob M, Bevan S, Nagy I, Cruz F (2004) Anandamide-evoked activation of vanilloid receptor 1 contributes to the development of bladder hyperreflexia and nociceptive transmission to spinal dorsal horn neurons in cystitis. J Neurosci 24:11253–11263

    CAS  PubMed  Google Scholar 

  83. Charrua A, Cruz CD, Narayanan S, Gharat L, Gullapalli S, Cruz F, Avelino A (2009) GRC-6211, a new oral specific TRPV1 antagonist, decreases bladder overactivity and noxious bladder input in cystitis animal models. J Urol 181:379–386

    CAS  PubMed  Google Scholar 

  84. Yoshiyama M, Araki I, Kobayashi H, Zakoji H, Takeda M (2010) Functional roles of TRPV1 channels in lower urinary tract irritated by acetic acid: in-vivo evaluations on the sex difference in decerebrate unanesthetized mice. Am J Physiol Renal Physiol doi: 10.1152/ajprenal.00685.2009

    Google Scholar 

  85. Zeihofer HU, Kress M, Swandulla D (1997) Functional Ca2+ currents through capsaicin- and proton-activated ion channels in rat dorsal root ganglion neurons. J Physiol 503:67–78

    Google Scholar 

  86. Rigoni M, Trevisani M, Gazzieri D, Nadaletto R, Tognetto M, Creminon C, Davis JB, Campi B, Amadesi S, Geppetti P, Harrison S (2003) Neurogrnic responses mediated by vanilloid receptor-1 (TRPV1) are blocked by the high affinity antagonist, iodo-resiniferatoxin. Br J Pharmacol 138:977–985

    PubMed Central  CAS  PubMed  Google Scholar 

  87. Wang ZY, Wang P, Merriam FV, Bjorling DE (2008) Lack of TRPV1 inhibits cystitis-induced increased mechanical sensitivity in mice. Pain 139:158–167

    CAS  PubMed  Google Scholar 

  88. Charrua A, Cruz CD, Cruz F, Avelino A (2007) Transient receptor potential vanilloid subfamily 1 is essential for the generation of noxious bladder input and bladder overactivity in cystitis. J Urol 177:1537–1541

    CAS  PubMed  Google Scholar 

  89. Daly D, Rong W, Chess-Williams R, Chapple C, Grundy D (2007) Bladder afferent sensitivity in wild-type and TRPV1 knockout mice. J Physiol 583(2):663–674

    PubMed Central  CAS  PubMed  Google Scholar 

  90. Charrua A, Reguenga C, Cordeiro JM, Correiade-Sa P, Paule C, Nagy I, Cruz F, Avelino A (2009) Functional transient receptor potential vanilloid 1 is expressed in human urothelial cells. J Urol 182:2944–2950

    CAS  PubMed  Google Scholar 

  91. Yamada T, Ugawa S, Ueda T, Ishida Y, Kajita K, Shimada S (2009) Differential localizations of the transient receptor potential channels TRPV4 and TRPV1 in the mouse urinary bladder. J Histochem Cytochem 57:277–287

    PubMed Central  CAS  PubMed  Google Scholar 

  92. Xu X, Gordon E, Lin Z, Lozinskaya IM, Chen Y, Thorneloe KS (2009) Functional TRPV4 channels and an absence of capsaicin-evoked currents in freshly–isolated, guinea-pig urothelial cells. Channels 3:15–160

    Google Scholar 

  93. Everaerts W, Vriens J, Owsianik G, Appendino G, Voets T, De Ridder D, Nilius B Functional characterisation of transient receptor potential channels in mouse urothelial cells. Am J Physiol Renal Physiol doi: 10.1152/ajprenal.00599.2009 in press

    Google Scholar 

  94. Mochizuki T, Sokabe T, Araki I, Fujishita K, Shibasaki K, Uchida K, Koizumi S, Takeda M, Tominaga M (2009) The TRPV4 cation channel mediates stretch-evoked Ca2+ influx and ATP release in primary urothelial cell cultures. J Biol Chem 284:21257–21264

    PubMed Central  CAS  PubMed  Google Scholar 

  95. Stein RJ, Santos S, Nagatomi J, Hayashi Y, Minnery BS, Xavier M, Patel AS, Nelson JB, Futrell WJ, Yoshimura N, Chancellor MB, De Miguel F (2004) Cool (TRPM8) and hot (TRPV1) receptors in the bladder and male genital tract. J Urol 172:1175–1178

    CAS  PubMed  Google Scholar 

  96. Tsukimi Y, Mizuyachi K, Yamasaki T, Niki T, Hayashi F (2005) Cold response of the bladder in guinea pig: involvement of transient receptor potential channel, TRPM8. Urology 65: 406–410

    PubMed  Google Scholar 

  97. Mukerji G, Yiangou Y, Corcoran SL, Selmer IS, Smith GD, Benham CD, Bountra C, Agarwal SK, Anand P (2006) Cool and menthol receptor TRPM8 in human urinary bladder disorders and clinical correlations. BMC Urol 6:6

    PubMed Central  PubMed  Google Scholar 

  98. Nomoto Y, Yoshida A, Ikeda S, Kamikawa Y, Harada K, Ohwatashi A, Kawahira K (2008) Effect of menthol on detrusor smooth-muscle contraction and micturition reflex in rats. Urology 72:701–705

    PubMed  Google Scholar 

  99. Lashinger ESR, Steiginga MS, Hieble JP, Leon LA, Gardner SD, Nagilla R, Davenport EA, Hoffman BE, Laping NJ, Su X (2008) AMTB, a TRPM8 channel blocker: evidence in rats for activity in overactive bladder and painful bladder syndrome. Am J Physiol Renal Physiol 295:F803–F810

    CAS  PubMed  Google Scholar 

  100. Hayashi T, Kondo T, Ishimatsu M, Yamada S, Nakamura K, Matsuoka K, Akasu T (2009) Expression of the TRPM8-immunoreactivity in dorsal root ganglion neurons innervating the rat urinary bladder. Neurosci Res 65:245–251

    CAS  PubMed  Google Scholar 

  101. Dhaka A, Murray AN, Mathur J, Earley TJ, Petrus MJ, Patapoutian A (2007) TRPM8 is required for cold sensation in mice. Neuron 54:371–378

    CAS  PubMed  Google Scholar 

  102. Colbum RW, Lubin ML, Stone DJ Jr, Wang Y, Lawrence D, D’Andrea MR, Brandt MR, Liu Y, Flores CM, Qin N (2007) Attenuated cold sensitivity in TRPM8 null mice. Neuron 54:379–386

    Google Scholar 

  103. Mahieu F, Owsianik G, Verbert L, Janssens A, De Smedt H, Nillius B, Voets T (2007) TRPM8-independent menthol-induced Ca2+ release from endoplasmic reticulum and Golgi. J Biol Chem 282:3325–3336

    CAS  PubMed  Google Scholar 

  104. Du S, Araki I, Kobayashi H, Zakoji H, Sawada N, Takeda M (2008) Differential expression profile of cold (TRPA1) and cool (TRPM8) receptors in human urogenital organs. Urology 72:450–455

    PubMed  Google Scholar 

  105. Nagata K, Duggan A, Kumar G, Garcia-Anoveros J (2005) Nociceptor and hair cell transducer properties of TRPA1, a channel for pain and hearing. J Neurosci 25:4052–4061

    CAS  PubMed  Google Scholar 

  106. Du S, Araki I, Yoshiyama M, Nomura T, Takeda M (2007) Transient receptor potential channel A1 involved in sensory transduction of rat urinary bladder through C-fiber pathway. Urology 70:826–831

    PubMed  Google Scholar 

  107. Streng T, Axelsson HE, Hedlund P, Andersson DA, Jordt SE, Bevan S, Andersson KE, Hogestatt ED, Zygmunt PM (2008) Distribution and function of the hydrogen sulfide-sensitive TRPA1 ion channels in rat urinary bladder. Eur Urol 53:391–400

    CAS  PubMed  Google Scholar 

  108. Story GM, Peier AM, Reeve AJ, Eid SR, Mosbacher J, Hricik TR, Earley TJ, Hergarden AC, Andersson DA, Hwang SW, McIntyre P, Jegla T, Bevan S, Patapoutian A (2003) ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112:819–829

    CAS  PubMed  Google Scholar 

  109. Bandell M, Story GM, Hwang SW, Viswanath V, Eid SR, Petrus MJ, Earley TJ, Patapoutian A (2004) Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron 41:849–857

    CAS  PubMed  Google Scholar 

  110. Kwan KY, Allchorne AJ, Vollrath MA, Christensen AP, Zhang DS, Woolf CJ, Corey DP (2006) TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction. Neuron 50:277–289

    CAS  PubMed  Google Scholar 

  111. Bautista DM, Jordt S-E, Nikai T, Tsuruda PR, Read AJ, Poblete J, Yamoah EN, Basbaum AI, Julius D (2006) TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell 124:1269–1282

    CAS  PubMed  Google Scholar 

  112. Andrade EL, Ferreira J, Andre E, Calixto JB (2006) Contractile mechanisms coupled to TRPA1 receptor activation in rat urinary bladder. Biochem Pharmacol 72:104–114

    CAS  PubMed  Google Scholar 

  113. Suzuki M, Mizuno A, Kodaira K, Imai M (2003) Impaired pressure sensation in mice lacking TRPV4. J Biol Chem 278:22664–22668

    CAS  PubMed  Google Scholar 

  114. Liedtke W, Friedman JM (2003) Abnormal osmotic regulation in trp4–/– mice. Proc Natl Acad Sci USA 100:13698–13703

    PubMed Central  CAS  PubMed  Google Scholar 

  115. Gavaert T, Vriens J, Segal A, Everaerts W, Roskams T, Talavera K, Owsianik G, Liedtke W, Daelemans D, Dewachter I, Van Leuven F, Voets T, De Ridder D, Nilius B (2007) Deletion of the transient receptor potential cation channel TRPV4 impairs murine bladder voiding. J Clin Invest 117:3453–3462

    Google Scholar 

  116. Birder L, Kullmann FA, Lee H, Barrick S, de Groat W, Kanai A, Caterina M (2007) Activation of urothelial transient receptor potential vanilloid 4 by 4αphorbol 12,13-didecanoate contributes to altered bladder reflexes in the rat. J Pharmacol Exp Ther 323:227–235

    CAS  PubMed  Google Scholar 

  117. Thorneloe KS, Sulpizio AC, Lin Z, Figueroa DJ, Clouse AK, McCafferty GP, Chendrimada TP, Lashinger ESR, Gordon E, Evans L, Misajet BA, DeMarini DJ, Nation JH, Casillas LN, Marquis RW, Votta BJ, Sheardown SA, Xu X, Brooks DP, Laping NJ, Westfall TD (2008) N-((1S)-1-{[4-((2S)-2-{[(2,4-Dichlorophenyl)sulfonyl]amino}-3-hydroxypropanoyl)-1-piperazinyl}-3-methylbutyl)-1-benzothiophene-2-carboxamide (GSK1016790A), a novel and potent transient receptor potential vanilloid 4 channel agonist induces urinary bladder contraction and hyperactivity: part I. J Pharmacol Exp Ther 326:432–442

    CAS  PubMed  Google Scholar 

  118. Muraki K, Iwata Y, Katanosaka Y, Ito T, Ohya S, Shigekawa M, Imaizumi Y (2003) TRPV2 is a component of osmotically sensitive cation channels in murine aortic myocytes. Circ Res 93:829–838

    CAS  PubMed  Google Scholar 

  119. Caprodossi S, Lucciarini R, Amantini C, Nabissi M, Canesin G, Ballarini P, Di Spilimbergo A, Cardarelli MA, Servi L, Mammana G, Santoni G (2008) Transient receptor potential vanilloid type 2 (TRPV2) expression in normal urothelium and in urothelial carcinoma of human bladder: correlation with the pathologic stage. Eur Urol 54:612–620

    CAS  PubMed  Google Scholar 

  120. Pedersen SF, Nilius B (2007) Transient receptor potential channels in mechanosensing and cell volume regulation. Methods Enzymol 428:183–207

    CAS  PubMed  Google Scholar 

  121. de la Rosa DA, Canessa CM, Fyfe GK, Zhang P (2000) Structure and regulation of amiloride-sensitive sodium channels. Annu Rev Physiol 62:573–594

    Google Scholar 

  122. Kellenberger S, Schild L (2002) Epithelial sodium channel/degenerin family of ion channels: a variety of functions for a shared structure. Physiol Rev 82:735–767

    CAS  PubMed  Google Scholar 

  123. Drummond HA, Price MP, Welsh MJ, Abboud FM (1998) A molecular component of the arterial baroreceptor mechanotransducer. Neuron 21:1435–1441

    CAS  PubMed  Google Scholar 

  124. Drummond HA, Abboud FM, Welsh MJ (2000) Localization β and γ subunits of ENaC in sensory nerve endings in the rat foot pad. Brain Res 884:1–12

    CAS  PubMed  Google Scholar 

  125. Fricke B, Lints R, Stewart G, Drummond H, Dodt G, Driscoll M, von During M (2000) Epithelial Na+ channels and stomatin are expressed in rat trigeminal mechanosensory neurons. Cell Tissue Res 299:327–334

    CAS  PubMed  Google Scholar 

  126. Kopp UC, Matsushita K, Sigmund RD, Smith LA, Watanabe S, Stokes JB (1792) Amiloride-sensitive Na+ channels in pelvic uroepithelium involved in renal sensory receptor activation. Am J Physiol Regul Integr Comp Physiol 1998(275):R1780–R1792

    Google Scholar 

  127. Smith PR, Mackler SA, Weiser PC, Brooker DR, Ahn YJ, Harte BJ, McNulty KA, Kleyman TR (1998) Expression and localization of epithelial sodium channel in mammalian urinary bladder. Am J Physiol Renal Physiol 274:F91–F96

    CAS  Google Scholar 

  128. Araki I, Du S, Kamiyama M, Mikami Y, Matsushita K, Komuro M, Furuya Y, Takeda M (2004) Overexpression of epithelial sodium channels in epithelium of human urinary bladder with outlet obstruction. Urology 64:1255–1260

    PubMed  Google Scholar 

  129. Du S, Araki I, Mikami Y, Zakoji H, Beppu M, Yoshiyama M, Takeda M (2007) Amiloride-sensitive ion channels in urinary bladder epithelium involved in mechanosensory transduction by modulating stretch-evoked adenosine triphosphate release. Urology 69:590–595

    PubMed  Google Scholar 

  130. Ferguson DR (1999) Urothelial function. BJU Int 84:235–242

    CAS  PubMed  Google Scholar 

  131. Birder LA, Barrick SR, Roppolo JR, Kanai AJ, de Groat WC, Kiss S, Buffington CA (2003) Feline interstitial cystitis results in mechanical hypersensitivity and altered ATP release from bladder urothelium. Am J Physiol Renal Physiol 285:F423–F429

    CAS  PubMed  Google Scholar 

  132. Wemmie JA, Price MP, Welsh MJ (2006) Acid-sensing ion channels: advances, questions and therapeutic opportunities. Trends Neurosci 29:578–586

    CAS  PubMed  Google Scholar 

  133. Lingueglia E (2007) Acid-sensing ion channels in sensory perception. J Biol Chem 282:17325–17329

    CAS  PubMed  Google Scholar 

  134. Kobayashi H, Yoshiyama M, Zakoji H, Takeda M, Araki I (2009) Sex differences in expression profile of acid-sensing ion channels in the mouse urinary bladder: a possible involvement in irritative bladder symptoms. BJU Int 104:1746–1751

    CAS  PubMed  Google Scholar 

  135. Corrow K, Girard BM, Vizzard MA Expression and response of acid-sensing ion channels (ASICs) in urinary bladder to cyclophosphamide (CYP)-induced cystitis. Am J Physiol Renal Physiol in press; doi: 10.1152/ajprenal.00618.2009

    Google Scholar 

  136. Sadananda P, Shang F, Liu L, Mansfield KJ, Burcher E (2009) Release of ATP from rat urinary bladder mucosa: role of acid, vanilloids and stretch. Br J Pharmacol 158: 1655–1662

    PubMed Central  CAS  PubMed  Google Scholar 

  137. Kullmann FA, Shah MA, Birder LA, de Groat WC (2009) Functional TRP and ASIC-like channels in cultured urothelial cells from the rat. Am J Physiol Renal Physiol 296: F892–F901

    PubMed Central  CAS  PubMed  Google Scholar 

  138. Page AJ, Brierley SM, Martin CM, Martinez-Salgado C, Wemmie JA, Brennan TJ, Symonds E, Omari T, Lewin GR, Welsh MJ, Blackshaw LA (2004) The ion channel ASIC1 contributes to visceral but not cutaneous mechanoreceptor function. Gastroenterology 127:1739–1747

    CAS  PubMed  Google Scholar 

  139. Page AJ, Brierley SM, Martin CM, Price M, Symonds E, Butler R, Wemmie JA, Blackshaw LA (2005) Different contributions of ASIC channels 1a, 2, and 3 in gastrointestinal mechanosensory function. Gut 54:1408–1415

    PubMed Central  CAS  PubMed  Google Scholar 

  140. Jones III RCW, Xu L, Gebhart GF (2005) The mechanosensitivity of mouse colon afferent fibers and their sensitization by inflammatory mediators require transient receptor potential vanilloid 1 and acid-sensing ion channel 3. J Neurosci 25:10981–10989

    CAS  PubMed  Google Scholar 

  141. Sanders KM, Koh SD (2006) Two-pore-domain potassium channels in smooth muscles: new components of myogenic regulation. J Physiol 570:37–43

    PubMed Central  CAS  PubMed  Google Scholar 

  142. Tertyshnikova S, Knox RJ, Plym MJ, Thalody G, Griffin C, Neelands T, Harden DG, Signor L, Weaver D, Myers RA, Lodge NJ (2005) JBL-1249[(5,6,7,8-tetrahydro-naphthalen-1-yl)-[2-(1H-tetrazol-5-yl)-phenyl]-amine]: a putative potassium channel opener with bladder-relaxant properties. J Pharmacol Exp Ther 313:250–259

    CAS  PubMed  Google Scholar 

  143. Baker SA, Hatton WJ, Han J, Hennig GW, Britton FC, Koh SD (2010) Role of TREK-1 potassium channel in bladder overactivity after partial bladder outlet obstruction in mouse. J Urol 183:793–800

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isao Araki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Araki, I. (2011). TRP Channels in Urinary Bladder Mechanosensation. In: Islam, M. (eds) Transient Receptor Potential Channels. Advances in Experimental Medicine and Biology, vol 704. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0265-3_45

Download citation

Publish with us

Policies and ethics