Skip to main content

Molecular Expression and Functional Role of Canonical Transient Receptor Potential Channels in Airway Smooth Muscle Cells

  • Chapter
  • First Online:
Transient Receptor Potential Channels

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 704))

Abstract

Multiple canonical or classic transient receptor potential (TRPC) molecules are expressed in animal and human airway smooth muscle cells (SMCs). TRPC3, but not TRPC1, is a major molecular component of native non-selective cation channels (NSCCs) to contribute to the resting [Ca2+]i and muscarinic increase in [Ca2+]i in freshly isolated airway SMCs. TRPC3-encoded NSCCs are significantly increased in expression and activity in airway SMCs from ovalbumin-sensitized/challenged “asthmatic” mice, whereas TRPC1-encoded channel activity, but not its expression, is largely augmented. The upregulated TRPC3- and TRPC1-encoded NSCC activity both mediate “asthmatic” membrane depolarization in airway SMCs. Supportively, tumor necrosis factor-α (TNFα), an important asthma mediator, increases TRPC3 expression, and TRPC3 gene silencing inhibits TNFα-mediated augmentation of acetylcholine-evoked increase in [Ca2+]i in passaged airway SMCs. In contrast, TRPC6 gene silencing has no effect on 1-oleoyl-2-acetyl-sn-glycerol (OAG)-evoked increase in [Ca2+]i in primary isolated cells. These findings provide compelling information indicating that TRPC3-encoded NSCCs are important for physiological and pathological cellular responses in airway SMCs. However, continual studies are necessary to further determine whether, which, and how TRPC-encoded channels are involved in cellular responses in normal and diseased (e.g., asthmatic) airway SMCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nilius B, Owsianik G, Voets T, Peters JA (2007) Transient receptor potential cation channels in disease. Physiol Rev 87:165–217

    Article  CAS  PubMed  Google Scholar 

  2. Abramowitz J, Birnbaumer L (2009) Physiology and pathophysiology of canonical transient receptor potential channels. FASEB J 23:297–328

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Ong HL, Brereton HM, Harland ML, Barritt GJ (2003) Evidence for the expression of transient receptor potential proteins in guinea pig airway smooth muscle cells. Respirology 8:23–32

    Article  PubMed  Google Scholar 

  4. Corteling RL, Li S, Giddings J, Westwick J, Poll C, Hall IP (2004) Expression of transient receptor potential, C6 and related transient receptor potential family members in human airway smooth muscle and lung tissue. Am J Respir Cell Mol Biol 30:145–154

    Article  CAS  PubMed  Google Scholar 

  5. White TA, Xue A, Chini EN, Thompson M, Sieck GC, Wylam ME (2006) Role of transient receptor potential C3 in, TNF-alpha-enhanced calcium influx in human airway myocytes. Am J Respir Cell Mol Biol 35:243–251

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Ong HL, Chen J, Chataway T et al (2002) Specific detection of the endogenous transient receptor potential (TRP)-1 protein in liver and airway smooth muscle cells using immunoprecipitation and Western-blot analysis. Biochem J 364:641–648

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Ay B, Prakash YS, Pabelick CM, Sieck GC (2004) Store-operated Ca2+ entry in porcine airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 286:L909–L917

    Article  CAS  PubMed  Google Scholar 

  8. Godin N, Rousseau E (2007) TRPC6 silencing in primary airway smooth muscle cells inhibits protein expression without affecting OAG-induced calcium entry. Mol Cell Biochem 296:193–201

    Article  CAS  PubMed  Google Scholar 

  9. Xiao JH, Zheng YM, Liao B, Wang YX (2010) Functional role of canonical transient receptor potential 1 and canonical transient receptor potential 3 in normal and asthmatic airway smooth muscle cells. Am J Resoir Cell Mol Biol 43:17–25

    Article  CAS  Google Scholar 

  10. Snetkov VA, Pandya H, Hirst SJ, Ward JP (1998) Potassium channels in human fetal airway smooth muscle cells. Pediatr Res 43:548–554

    Article  CAS  PubMed  Google Scholar 

  11. Snetkov VA, Ward JP (1999) Ion currents in smooth muscle cells from human small bronchioles: presence of an inward rectifier K+ current and three types of large conductance K+ channel. Exp Physiol 84:835–8460

    Article  CAS  PubMed  Google Scholar 

  12. Snetkov VA, Hapgood KJ, McVicker CG, Lee TH, Ward JP (2001) Mechanisms of leukotriene D4-induced constriction in human small bronchioles. Br J Pharmacol 133:243–252

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Helli PB, Janssen LJ (2008) Properties of a store-operated nonselective cation channel in airway smooth muscle. Eur Respir J 32:1529–1538

    Article  CAS  PubMed  Google Scholar 

  14. Albert AP, Piper AS, Large WA (2003) Properties of a constitutively active Ca2+-permeable non-selective cation channel in rabbit ear artery myocytes. J Physiol 549:143–156

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Albert AP, Large WA (2001) Comparison of spontaneous and noradrenaline-evoked non-selective cation channels in rabbit portal vein myocytes. J Physiol 530:457–468

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Liu XS, Xu YJ (2005) Potassium channels in airway smooth muscle and airway hyperreactivity in asthma. Chin Med J (Engl) 118:574–580

    CAS  Google Scholar 

  17. Hirota S, Helli P, Janssen LJ (2007) Ionic mechanisms and Ca2+ handling in airway smooth muscle. Eur Respir J 30:114–133

    Article  CAS  PubMed  Google Scholar 

  18. Bae YM, Park MK, Lee SH, Ho WK, Earm YE (1999) Contribution of, Ca2+-activated, K+ channels and non-selective cation channels to membrane potential of pulmonary arterial smooth muscle cells of the rabbit. J Physiol (Lond) 514:747–758

    Article  CAS  Google Scholar 

  19. Terasawa K, Nakajima T, Iida H et al (2002) Nonselective cation currents regulate membrane potential of rabbit coronary arterial cell: modulation by lysophosphatidylcholine. Circulation 106:3111–3119

    Article  PubMed  Google Scholar 

  20. Albert AP, Pucovsky V, Prestwich SA, Large WA (2006) TRPC3 properties of a native constitutively active Ca2+-permeable cation channel in rabbit ear artery myocytes. J Physiol 571:361–369

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Janssen LJ, Sims SM (1992) Acetylcholine activates non-selective cation and chloride conductances in canine and guinea-pig tracheal myocytes. J Physiol 453:197–218

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Wang YX, Fleischmann BK, Kotlikoff MI (1997) M2 receptor activation of nonselective cation channels in smooth muscle cells: calcium and Gi/Go requirements. Am J Physiol 273:C500–C508

    CAS  PubMed  Google Scholar 

  23. Fleischmann BK, Wang YX, Kotlikoff MI (1997) Muscarinic activation and calcium permeation of nonselective cation currents in airway myocytes. Am J Physiol 272:C341–C349

    CAS  PubMed  Google Scholar 

  24. Wang YX, Kotlikoff MI (2000) Signalling pathway for histamine activation of non-selective cation channels in equine tracheal myocytes. J Physiol (Lond) 523:131–138

    Article  CAS  Google Scholar 

  25. Yamashita T, Kokubun S (1999) Nonselective cationic currents activated by acetylcholine in swine tracheal smooth muscle cells. Can J Physiol Pharmacol 77:796–805

    Article  CAS  PubMed  Google Scholar 

  26. Murray RK, Kotlikoff MI (1991) Receptor-activated calcium influx in human airway smooth muscle cells. J Physiol 435:123–144

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Gorenne I, Labat C, Gascard JP, Norel X, Nashashibi N, Brink C (1998) Leukotriene D4 contractions in human airways are blocked by SK&F 96365, an inhibitor of receptor-mediated calcium entry. J Pharmacol Exp Ther 284:549–552

    CAS  PubMed  Google Scholar 

  28. Parvez O, Voss AM, de KM, Roth-Kleiner M, Belik J (2006) Bronchial muscle peristaltic activity in the fetal rat. Pediatr Res 59:756–761

    Article  PubMed  Google Scholar 

  29. Dai JM, Kuo KH, Leo JM, van BC, Lee CH (2006) Mechanism of ACh-induced asynchronous calcium waves and tonic contraction in porcine tracheal muscle bundle. Am J Physiol Lung Cell Mol Physiol 290:L459–L469

    Article  CAS  PubMed  Google Scholar 

  30. Dai JM, Kuo KH, Leo JM, Pare PD, van BC, Lee CH (2007) Acetylcholine-induced asynchronous calcium waves in intact human bronchial muscle bundle. Am J Respir Cell Mol Biol 36:600–608

    Article  CAS  PubMed  Google Scholar 

  31. Hirota S, Janssen LJ (2007) Store-refilling involves both L-type calcium channels and reverse-mode sodium-calcium exchange in airway smooth muscle. Eur Respir J 30:269–278

    Article  CAS  PubMed  Google Scholar 

  32. Hirota S, Pertens E, Janssen LJ (2007) The reverse mode of the Na+/Ca2+ exchanger provides a source of Ca2+ for store refilling following agonist-induced Ca2+ mobilization. Am J Physiol Lung Cell Mol Physiol 292:L438–L447

    Article  CAS  PubMed  Google Scholar 

  33. Jeon JP, Lee KP, Park EJ et al (2008) The specific activation of, TRPC4 by Gi protein subtype. Biochem Biophys Res Commun 377:538–543

    Article  CAS  PubMed  Google Scholar 

  34. Tsvilovskyy VV, Zholos AV, Aberle T et al (2009) Deletion of TRPC4 and TRPC6 in mice impairs smooth muscle contraction and intestinal motility in vivo. Gastroenterology 137:1415–1424

    Article  PubMed Central  PubMed  Google Scholar 

  35. Blaustein MP, Lederer WJ (1999) Sodium/Calcium exchange: its physiological implications. Physiol Rev 79:763–854

    CAS  PubMed  Google Scholar 

  36. Zheng YM, Wang YX (2007) Sodium-calcium exchanger in pulmonary artery smooth muscle cells. Ann NY Acad Sci 1099:427–435

    Article  CAS  PubMed  Google Scholar 

  37. Rosker C, Graziani A, Lukas M et al (2004) Ca2+ signaling by TRPC3 involves Na+ entry and local coupling to the Na+/Ca2+ exchanger. J Biol Chem 279:13696–13704

    Article  CAS  PubMed  Google Scholar 

  38. Algara-Suarez P, Romero-Mendez C, Chrones T et al (2007) Functional coupling between the Na+/Ca2+ exchanger and nonselective cation channels during histamine stimulation in guinea pig tracheal smooth muscle. Am J Physiol Lung Cell Mol Physiol 293:L191–L198

    Article  CAS  PubMed  Google Scholar 

  39. Kotlikoff MI (1988) Calcium currents in isolated canine airway smooth muscle cells. Am J Physiol 254:C793–C801

    CAS  PubMed  Google Scholar 

  40. Fleischmann BK, Murray RK, Kotlikoff MI (1994) Voltage window for sustained elevation of cytosolic calcium in smooth muscle cells. Proc Natl Acad Sci USA 91:11914–11918

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Fleischmann BK, Wang YX, Pring M, Kotlikoff MI (1996) Voltage-dependent calcium currents and cytosolic calcium in equine airway myocytes. J Physiol (Lond) 492:347–358

    Article  Google Scholar 

  42. Welling A, Felbel J, Peper K, Hofmann F (1992) Hormonal regulation of calcium current in freshly isolated airway smooth muscle cells. Am J Physiol 262:L351–L359

    CAS  PubMed  Google Scholar 

  43. Hisada T, Kurachi Y, Sugimoto T (1990) Properties of membrane currents in isolated smooth muscle cells from guinea-pig trachea. Pflugers Arch 416:151–161

    Article  CAS  PubMed  Google Scholar 

  44. Marthan R, Martin C, Amedee T, Mironneau J (1989) Calcium channel currents in isolated smooth muscle cells from human bronchus. J Appl Physiol 66:1706–1714

    CAS  PubMed  Google Scholar 

  45. Janssen LJ (1997) T-type and L-type Ca2+ currents in canine bronchial smooth muscle: characterization and physiological roles. Am J Physiol 272:C1757–C1765

    CAS  PubMed  Google Scholar 

  46. Liu QH, Zheng YM, Korde AS et al (2009) Membrane depolarization causes a direct activation of G protein-coupled receptors leading to local Ca2+ release in smooth muscle. Proc Natl Acad Sci USA 106:11418–11423

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Semenov I, Wang B, Herlihy JT, Brenner R (2006) BK channel beta1-subunit regulation of calcium handling and constriction in tracheal smooth muscle. Am J Physiol Lung Cell Mol Physiol 291:L802–L810

    Article  CAS  PubMed  Google Scholar 

  48. Tao L, Huang Y, Bourreau JP (2000) Control of the mode of excitation-contraction coupling by Ca2+ stores in bovine trachealis muscle. Am J Physiol Lung Cell Mol Physiol 279:L722–L732

    CAS  PubMed  Google Scholar 

  49. Qian Y, Bourreau JP (1999) Two distinct pathways for refilling Ca2+ stores in permeabilized bovine trachealis muscle. Life Sci 64:2049–2059

    Article  CAS  PubMed  Google Scholar 

  50. Kannan MS, Davis C, Ladenius AR, Kannan L (1987) Agonist interactions at the calcium pools in skinned and unskinned canine tracheal smooth muscle. Can J Physiol Pharmacol 65:1780–1787

    Article  CAS  PubMed  Google Scholar 

  51. Farley JM, Miles PR (1978) The sources of calcium for acetylcholine-induced contractions of dog tracheal smooth muscle. J Pharmacol Exp Ther 207:340–346

    CAS  PubMed  Google Scholar 

  52. Bourreau JP, Abela AP, Kwan CY, Daniel EE (1991) Acetylcholine Ca2+ stores refilling directly involves a dihydropyridine-sensitive channel in dog trachea. Am J Physiol 261:C497–C505

    CAS  PubMed  Google Scholar 

  53. Bourreau JP, Kwan CY, Daniel EE (1993) Distinct pathways to refill ACh-sensitive internal Ca2+ stores in canine airway smooth muscle. Am J Physiol 265:C28–C35

    CAS  PubMed  Google Scholar 

  54. Daniel EE, Jury J, Serio R, Jager LP (1991) Role of depolarization and calcium in contractions of canine trachealis from endogenous or exogenous acetylcholine. Can J Physiol Pharmacol 69:518–525

    Article  CAS  PubMed  Google Scholar 

  55. Perez JF, Sanderson MJ (2005) The frequency of calcium oscillations induced by 5-HT ACH, and KCl determine the contraction of smooth muscle cells of intrapulmonary bronchioles. J Gen Physiol 125:535–553

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Barnes PJ (1985) Clinical studies with calcium antagonists in asthma. Br J Clin Pharmacol 20(Suppl 2):289S–298S

    Article  PubMed Central  PubMed  Google Scholar 

  57. Fish JE (1984) Calcium channel antagonists in the treatment of asthma. J Asthma 21:407–418

    Article  CAS  PubMed  Google Scholar 

  58. Gordon EH, Wong SC, Klaustermeyer WB (1987) Comparison of nifedipine with a new calcium channel blocker, flordipine, in exercise-induced asthma. J Asthma 24:261–265

    Article  CAS  PubMed  Google Scholar 

  59. Hoppe M, Harman E, Hendeles L (1992) The effect of inhaled gallopamil, a potent calcium channel blocker, on the late-phase response in subjects with allergic asthma. J Allergy Clin Immunol 89:688–695

    Article  CAS  PubMed  Google Scholar 

  60. Middleton E Jr (1985) Calcium antagonists and asthma. J Allergy Clin Immunol 76:341–346

    Article  PubMed  Google Scholar 

  61. Middleton E Jr (1985) The treatment of asthma–beyond bronchodilators. N Engl Reg Allergy Proc 6:235–237

    Article  PubMed  Google Scholar 

  62. Riska H, Stenius-Aarniala B, Sovijarvi AR (1987) Comparison of the effects of an angiotensin converting enzyme inhibitor and a calcium channel blocker on blood pressure and respiratory function in patients with hypertension and asthma. J Cardiovasc Pharmacol 10(Suppl 10):S79–S81

    Article  PubMed  Google Scholar 

  63. Sly PD, Olinsky A, Landau LI (1986) Does nifedipine affect the diurnal variation of asthma in children? Pediatr Pulmonol 2:206–210

    Article  CAS  PubMed  Google Scholar 

  64. Jude JA, Wylam ME, Walseth TF, Kannan MS (2008) Calcium signaling in airway smooth muscle. Proc Am Thorac Soc 5:15–22

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Sanderson MJ, Delmotte P, Bai Y, Perez-Zogbhi JF (2008) Regulation of airway smooth muscle cell contractility by Ca2+ signaling and sensitivity. Proc Am Thorac Soc 5:23–31

    Article  CAS  PubMed  Google Scholar 

  66. Sweeney M, McDaniel SS, Platoshyn O et al (2002) Role of capacitative Ca2+ entry in bronchial contraction and remodeling. J Appl Physiol 92:1594–1602

    Article  CAS  PubMed  Google Scholar 

  67. Ay B, Iyanoye A, Sieck GC, Prakash YS, Pabelick CM (2006) Cyclic nucleotide regulation of store-operated Ca2+ influx in airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 290:L278–L283

    Article  CAS  PubMed  Google Scholar 

  68. Sieck GC, White TA, Thompson MA, Pabelick CM, Wylam ME, Prakash YS (2008) Regulation of store-operated Ca2+ entry by CD38 in human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 294:L378–L385

    Article  CAS  PubMed  Google Scholar 

  69. Ito S, Kume H, Yamaki K et al (2002) Regulation of capacitative and noncapacitative receptor-operated Ca2+ entry by rho-kinase in tracheal smooth muscle. Am J Respir Cell Mol Biol 26:491–498

    Article  CAS  PubMed  Google Scholar 

  70. Helli PB, Pertens E, Janssen LJ (2005) Cyclopiazonic acid activates a Ca2+-permeable, nonselective cation conductance in porcine and bovine tracheal smooth muscle. J Appl Physiol 99:1759–1768

    Article  CAS  PubMed  Google Scholar 

  71. Peel SE, Liu B, Hall IP (2008) ORAI and store-operated calcium influx in human airway smooth muscle cells. Am J Respir Cell Mol Biol 38:744–749

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Ali S, Metzger WJ, Mustafa SJ (1996) Simultaneous measurement of cyclopentyladenosine-induced contraction and intracellular calcium in bronchial rings from allergic rabbits and it’s antagonism. J Pharmacol Exp Ther 278:639–644

    CAS  PubMed  Google Scholar 

  73. Tao FC, Tolloczko B, Eidelman DH, Martin JG (1999) Enhanced Ca2+ mobilization in airway smooth muscle contributes to airway hyperresponsiveness in an inbred strain of rat. Am J Respir Crit Care Med 160:446–453

    Article  CAS  PubMed  Google Scholar 

  74. Tao FC, Tolloczko B, Mitchell CA, Powell WS, Martin JG (2000) Inositol (1,4,5)-trisphosphate metabolism and enhanced calcium mobilization in airway smooth muscle of hyperresponsive rats [In Process Citation]. Am J Respir Cell Mol Biol 23:514–520

    Article  CAS  PubMed  Google Scholar 

  75. Zacour ME, Tolloczko B, Martin JG (2000) Calcium and growth responses of hyperresponsive airway smooth muscle to different isoforms of platelet-derived growth factor (PDGF). Can J Physiol Pharmacol 78:867–873

    Article  CAS  PubMed  Google Scholar 

  76. Perpina M, Palau M, Cortijo J, Fornas E, Ortiz JL, Morcillo E (1989) Sources of calcium for the contraction induced by various agonists in trachealis muscle from normal and sensitized guinea pigs. Respiration 55:105–112

    Article  CAS  PubMed  Google Scholar 

  77. McCaig D, De Jonckheere S (1993) Effects of two Ca2+ modulators in normal and albumin-sensitized guinea- pig trachea. Eur J Pharmacol 249:53–63

    Article  CAS  PubMed  Google Scholar 

  78. Akasaka K, Konno K, Ono Y, Mue S, Abe C (1975) Electromyographic study of bronchial smooth muslce in bronchial asthma. Tohoku J Exp Med 117:55–59

    Article  CAS  PubMed  Google Scholar 

  79. Amrani Y, Panettieri RA Jr, Frossard N, Bronner C (1996) Activation of the TNF alpha-p55 receptor induces myocyte proliferation and modulates agonist-evoked calcium transients in cultured human tracheal smooth muscle cells. Am J Respir Cell Mol Biol 15:55–63

    Article  CAS  PubMed  Google Scholar 

  80. Amrani Y, Krymskaya V, Maki C, Panettieri RA Jr (1997) Mechanisms underlying TNF-alpha effects on agonist-mediated calcium homeostasis in human airway smooth muscle cells. Am J Physiol 273:L1020–L1028

    CAS  PubMed  Google Scholar 

  81. Amrani Y, Panettieri RA Jr (1998) Cytokines induce airway smooth muscle cell hyperresponsiveness to contractile agonists. Thorax 53:713–716

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Deshpande DA, Dogan S, Walseth TF et al (2004) Modulation of calcium signaling by interleukin-13 in human airway smooth muscle: role of CD38/cyclic adenosine diphosphate ribose pathway. Am J Respir Cell Mol Biol 31:36–42

    Article  CAS  PubMed  Google Scholar 

  83. Kang BN, Deshpande DA, Tirumurugaan KG, Panettieri RA, Walseth TF, Kannan MS (2005) Adenoviral mediated anti-sense CD38 attenuates TNF-alpha-induced changes in calcium homeostasis of human airway smooth muscle cells. Can J Physiol Pharmacol 83:799–804

    Article  CAS  PubMed  Google Scholar 

  84. Pellegrino R, Violante B, Crimi E, Brusasco V (1991) Time course and calcium dependence of sustained bronchoconstriction induced by deep inhalation in asthma. Am Rev Respir Dis 144:1262–1266

    Article  CAS  PubMed  Google Scholar 

  85. Ahmed T, Danta I (1992) Modification of histamine- and methacholine-induced bronchoconstriction by calcium antagonist gallopamil in asthmatics. Respiration 59:332–338

    Article  CAS  PubMed  Google Scholar 

  86. Quast U (1992) Potassium channel openers: pharmacological and clinical aspects. Fundam Clin Pharmacol 6:279–293

    Article  CAS  PubMed  Google Scholar 

  87. Hakonarson H, Grunstein MM (1998) Regulation of second messengers associated with airway smooth muscle contraction and relaxation. Am J Respir Crit Care Med 158:S115–S122

    Article  CAS  PubMed  Google Scholar 

  88. Hirst SJ (2000) Airway smooth muscle as a target in asthma. Clin Exp Allergy 30(Suppl 1):54–59

    Article  PubMed  Google Scholar 

  89. An SS, Bai TR, Bates JH et al (2007) Airway smooth muscle dynamics: a common pathway of airway obstruction in asthma. Eur Respir J 29:834–860

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Berend N, Salome CM, King GG (2008) Mechanisms of airway hyperresponsiveness in asthma. Respirology 13:624–631

    Article  PubMed  Google Scholar 

  91. Janssen LJ (2009) Asthma therapy: how far have we come, why did we fail and where should we go next? Eur Respir J 33:11–20

    Article  CAS  PubMed  Google Scholar 

  92. Ramsey IS, Delling M, Clapham DE (2006) An introduction to TRP channels. Annu Rev Physiol 68:619–647

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Our work presented in this article was supported by NIH R01HL071000, and AHA Scientist Development Grant 0630236 N and Established Investigator Award 0340160 N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Xiao Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Wang, YX., Zheng, YM. (2011). Molecular Expression and Functional Role of Canonical Transient Receptor Potential Channels in Airway Smooth Muscle Cells. In: Islam, M. (eds) Transient Receptor Potential Channels. Advances in Experimental Medicine and Biology, vol 704. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0265-3_38

Download citation

Publish with us

Policies and ethics