Skip to main content

Complex Regulation of TRPV1 and Related Thermo-TRPs: Implications for Therapeutic Intervention

  • Chapter
  • First Online:
Transient Receptor Potential Channels

Abstract

The capsaicin receptor TRPV1 (Transient Receptor Potential, Vanilloid family member 1), the founding member of the heat-sensitive TRP (“thermo-TRP”) channel family, plays a pivotal role in pain transduction. There is mounting evidence that TRPV1 regulation is complex and is manifest at many levels, from gene expression through post-translational modification and formation of receptor heteromers to subcellular compartmentalization and association with regulatory proteins. These mechanisms are believed to be involved both in disease-related changes in TRPV1 expression, and the long-lasting refractory state, referred to as “desensitization”, that follows TRPV1 agonist treatment. The signaling cascades that regulate TRPV1 and related thermo-TRP channels are only beginning to be understood. Here we review our current knowledge in this rapidly changing field. We propose that the complex regulation of TRPV1 may be exploited for therapeutic purposes, with the ultimate goal being the development of novel, innovative agents that target TRPV1 in diseased, but not healthy, tissues. Such compounds are expected to be devoid of the side-effects (e.g. hyperthermia and impaired noxious heat sensation) that plague the clinical use of existing TRPV1 antagonists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McMahon S, Koltzenburg M (eds) (2010) Wall and Melzack’s textbook of pain, 5th edn. Springer, Berlin

    Google Scholar 

  2. Katz WA, Barkin RL (2008) Dilemmas in chronic/peristent pain mangement. Am J Ther 15:256–264

    PubMed  Google Scholar 

  3. Noto C, Pappagallo M (2010) Current and emerging pharmacologic threrapies for pain and challenges which still lay ahead. In: Szallasi A (ed) Analgesia. Methods in Molecular Biology 617. Humana Press, Clifton, NJ

    Google Scholar 

  4. Geppetti P, Holzer P (eds) (1996) Neurogenic inflammation. CRC Press, Boca Raton, FL

    Google Scholar 

  5. Holzer P (1988) Local effector functions of capsaicin-sensitive sensory nerve endings: involvement of tachykinins, calcitonin gene-related peptide and other neuropeptides. Neuroscience 24:739–768

    CAS  PubMed  Google Scholar 

  6. Jancsó G (ed) (2009) NeuroImmune biology. Neurogenic Inflammation in Health and Disease, Vol. 8. Elsevier, Amsterdam

    Google Scholar 

  7. Gudin JA (2004) Expanding our understanding of central sensitization. Medscape Neurol Neurosurg 6:1

    Google Scholar 

  8. Ji RR, Kohno T, Moore KA, Woolf CJ (2003) Central sensitization and LTP: do pain and memory share similar mechanisms? Trends Neurosci 26:696–705

    CAS  PubMed  Google Scholar 

  9. Hill RG (2001) Molecular basis for the perception of pain. Neuroscientist 7:282–292

    CAS  PubMed  Google Scholar 

  10. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated channels in the pain pathway. Nature 389:816–824

    CAS  PubMed  Google Scholar 

  11. Caterina MJ, Julius D (2001) The vanilloid receptor: a molecular gateway to the pain pathway. Annu Rev Neurosci 24:487–517

    CAS  PubMed  Google Scholar 

  12. Szallasi A, Cortright DN, Blum CA, Eid SR (2007) The vanilloid receptor TRPV1: 10 years from channel cloning to antagonist proof-of-concept. Nature Rev Drug Discov 6: 357–372

    CAS  Google Scholar 

  13. Caterina MJ, Leffler A, Malmberg AB, Martin W et al (2000) Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288:306–313

    CAS  PubMed  Google Scholar 

  14. Davis JB, Gray J, Gunthorpe MJ, Hatcher JP et al (2000) Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature 405:183–187

    CAS  PubMed  Google Scholar 

  15. Szabó A, Helyes Z, Sándor K, Bite A et al (2005) Role of transient receptor potential vanilloid 1 receptors in adjuvant-induced chronic arthritis: in vivo study using gene-deficient mice. J Pharmacol Exp Ther 314:111–119

    PubMed  Google Scholar 

  16. Szallasi A, Cruz F, Geppetti P (2006) TRPV1: a therapeutic target for novel analgesic drugs? Trends Mol Med 12:545–554

    CAS  PubMed  Google Scholar 

  17. Gunthorpe M, Szallasi A (2008) Peripheral TRPV1 receptors as targets for drug development: new molecules and mechanisms. Curr Pharm Des 14:32–41

    CAS  PubMed  Google Scholar 

  18. Trevisani M, Szallasi A (2010) Targeting TRPV1: Challenges and issues in pain management. The Open Drug Discov J 2:37–48

    CAS  Google Scholar 

  19. Gomtsyan A, Faltynek CR (eds) (2010) Vanilloid receptor TRPV1 in drug discovery. Targeting Pain and Other Pathological Disorders. Wiley, Hoboken, NJ

    Google Scholar 

  20. Szallasi A, Blumberg PM (1999) Vanilloid (capsaicin) receptors and mechanisms. Pharmacol Rev 51:159–211

    CAS  PubMed  Google Scholar 

  21. Szallasi A, DiMarzo V (2000) New perspectives on enigmatic vanilloid receptors. Trends Neurosci 23:491–496

    CAS  PubMed  Google Scholar 

  22. Pingle SC, Matta JA, Ahern G (2007) Capsaicin receptor: TRPV1, a promiscuous TRP channel. Handb Exp Pharmacol 179:155–172

    CAS  PubMed  Google Scholar 

  23. Clapham DE (2003) TRP channels as cellular sensors. Nature 426:517–524

    CAS  PubMed  Google Scholar 

  24. Nilius B, Owsianik G (2010) Transient receptor potential channelopathies. Mol Genom Physiol 460:437–450

    CAS  Google Scholar 

  25. Moran MM, Xu H, Clapham DE (2004) TRP ion channels in the nervous system. Curr Opin Neurobiol 14:362–369

    CAS  PubMed  Google Scholar 

  26. Planells-Cases R, Ferrer-Montiel A (2007) TRP channel trafficking. In: Liedtke WB, Heller S (eds) TRP ion channel function in sensory transduction and cellular signaling cascades. CRC Taylor & Francis, Boca Raton, FL

    Google Scholar 

  27. Huang J, Zhang X, McNaughton PA (2006) Modulation of temperature-sensitive TRP channels. Semin Cell Develop Biol 17:638–645

    CAS  Google Scholar 

  28. Kim H, Iadarola MJ, Dionne RA (in press) TRP polymorphism. In: Szallasi A (ed) TRP channels in health and disease – implications for diagnosis and therapy. Nova Publ, Hauppauge, NY

    Google Scholar 

  29. Cortright DN, Szallasi A (2009) TRP channels and pain. Curr Pharm Des 15:1736–1749

    CAS  PubMed  Google Scholar 

  30. Patapoutian A, Tate S, Woolf CJ (2009) Transient receptor potential channels: targeting pain at the source. Nature Rev Drug Discov 8:55–68

    CAS  Google Scholar 

  31. Szolcsányi J (1993) Actions of capsaicin on sensory receptors. In: Wood JN (ed) Capsaicin in the study of pain. Academic Press, London

    Google Scholar 

  32. Knotkova H, Pappagallo M, Szallasi A (2008) Capsaicin (TRPV1 agonist) therapy for pain relief: farewell or revival? Clin J Pain 24:142–154

    PubMed  Google Scholar 

  33. Cholewinski A, Burgess GM, Bevan S (1993) The role of calcium in capsaicin-induced desensitization in rat cultured dorsal root ganglion neurons. Neuroscience 55: 1015–1023

    CAS  PubMed  Google Scholar 

  34. Docherty RJ, Yeats JC, Bevan S, Boddeke HW (1996) Inhibition of calcineurin inhibits the desensitization of capsaicin-evoked currents in cultured dorsal root ganglion neurones from adult rats. Pflugers Arch 431:828–837

    CAS  PubMed  Google Scholar 

  35. Koplas PA, Rosenberg RL, Oxford GS (1997) The role of calcium in the desensitization of capsaicin responses in rat dorsal root ganglion neurons. J Neurosci 17:3525–3537

    CAS  PubMed  Google Scholar 

  36. Liu L, Simon SA (1996) Capsaicin-induced currents with distinct desensitization and Ca2+ dependence in rat trigeminal ganglion cells. J Neurophysiol 75:1503–1514

    CAS  PubMed  Google Scholar 

  37. Santicioli P, Patacchini R, Maggi CA, Meli A (1987) Exposure to calcium-free medium protects sensory fibers by capsaicin desensitization. Neurosci Lett 80:167–172

    CAS  PubMed  Google Scholar 

  38. Liu B, Zhang C, Qin F (2005) Functional recovery from desensitization of vanilloid receptor TRPV1 requires resynthesis of phosphatidylinositol 4,5 bisphosphate. J Neurosci 25:4835–4843

    CAS  PubMed  Google Scholar 

  39. Bhave G, Zhu W, Wang H, Brasier DJ, Oxford GS, Gereau RW (2002) cAMP-dependent protein kinase regulates desensitization of the capsaicin receptor (VR1) by direct phosphorylation. Neuron 35:721–731

    CAS  PubMed  Google Scholar 

  40. Mandadi S, Numazaki M, Tominaga M, Bhat MB, Armati PJ, Roufogalis BD (2004) Activation of protein kinase C reverses capsaicin-induced calcium-dependent desensitization of TRPV1 ion channels. Cell Calcium 35:471–478

    CAS  PubMed  Google Scholar 

  41. Mandadi S, Tominaga T, Numazaki M, Murayama N, Saito N, Armati PJ, Roufogalis BD, Tominaga M (2006) Increased sensitivity of desensitized TRPV1 by PMA occurs through PKCepsilon-mediated phosphorylation at S800. Pain 123:106–116

    CAS  PubMed  Google Scholar 

  42. Mohapatra DP, Nau C (2005) Regulation of Ca2+-dependent desensitization in the vanilloid receptor TRPV1 by calcineurin and cAMP-dependent protein kinase. J Biol Chem 280:13424–13432

    CAS  PubMed  Google Scholar 

  43. Mohapatra DP, Nau C (2003) Desensitization of capsaicin-activated currents in the vanilloid receptor TRPV1 is decreased by the cyclic AMP-dependent protein kinase pathway. J Biol Chem 278:50080–50090

    CAS  PubMed  Google Scholar 

  44. Jung J, Shin JS, Lee SY, Hwang SW, Koo J, Cho H, Oh U (2004) Phosphorylation of vanilloid receptor 1 by Ca+2/calmodulin-dependent kinase II regulates its vanilloid binding. J Biol Chem 279:7048–7054

    CAS  PubMed  Google Scholar 

  45. Lishko PV, Procko E, Jin X, Phelps CB, Gaudet R (2007) The ankyrin repeats of TRPV1 bind multiple ligands and modulate channel sensitivity. Neuron 54:905–918

    CAS  PubMed  Google Scholar 

  46. Numazaki M, Tominaga T, Takeuchi K, Murayama N, Toyooka H, Tominaga M (2003) Structural determinant of TRPV1 desensitization interacts with calmodulin. Proc Natl Acad Sci U S A 100:8002–8006

    PubMed Central  CAS  PubMed  Google Scholar 

  47. Lukacs V, Thyagarajan B, Varnai P, Balla A, Balla T, Rohacs T (2007) Dual regulation of TRPV1 by phosphoinositides. J Neurosci 27:7070–7080

    CAS  PubMed  Google Scholar 

  48. Klein RM, Ufret-Vincenty CA, Hua L, Gordon SE (2008) Determinants of molecular specificity in phosphoinositide regulation. Phosphatidylinositol (4,5)-bisphosphate (PI(4,5)P2) is the endogenous lipid regulating TRPV1. J Biol Chem 283:26208–26216

    PubMed Central  CAS  PubMed  Google Scholar 

  49. Stein AT, Ufret-Vincenty CA, Hua L, Santana LF, Gordon SE (2006) Phosphoinositide 3-kinase binds to TRPV1 and mediates NGF-stimulated TRPV1 trafficking to the plasma membrane. J Gen Physiol 128:509–522

    PubMed Central  CAS  PubMed  Google Scholar 

  50. Yao JF, Qin F (2009) Interaction with phosphoinositides confers adaptation onto the TRPV1 pain receptor. PLoS Biol 7:e46

    PubMed  Google Scholar 

  51. Novakova-Tousova K, Vyklicky L, Susankova K, Benedikt J, Samad A, Teisinger J, Vlachova V (2007) Functional changes in the vanilloid receptor subtype 1 channel during and after acute desensitization. Neuroscience 149:144–154

    CAS  PubMed  Google Scholar 

  52. Qin F (2007) Regulation of TRP ion channels by phosphatidylinositol-4,5-bisphosphate. Handb Exp Pharmacol 179:509–525

    CAS  PubMed  Google Scholar 

  53. Rohacs T, Thyagarajan B, Lukacs V (2008) Phospholipase C mediated modulation of TRPV1 channels. Mol Neurobiol 37:153–163

    PubMed Central  CAS  PubMed  Google Scholar 

  54. Rosenbaum T, Gordon-Shaag A, Munari M, Gordon SE (2004) Ca2+/calmodulin modulates TRPV1 activation by capsaicin. J Gen Physiol 123:53–62

    PubMed Central  CAS  PubMed  Google Scholar 

  55. Vyklicky L, Novakova-Tousova K, Benedikt J, Samad A, Touska F, Vlachova V (2008) Calcium-dependent desensitization of vanilloid receptor TRPV1: a mechanism possibly involved in analgesia induced by topical application of capsaicin. Physiol Res 57(Suppl 3):S59–S68

    CAS  PubMed  Google Scholar 

  56. Zhang X, McNaughton PA (2006) Why pain gets worse: the mechanism of heat hyperalgesia. J Gen Physiol 128:491–493

    PubMed Central  CAS  PubMed  Google Scholar 

  57. Cesare P, Dekker LV, Sardini A, Parker PJ, McNaughton PA (1999) Specific involvement of PKC-epsilon in sensitization of the neuronal response to painful heat. Neuron 23:617–624

    CAS  PubMed  Google Scholar 

  58. Premkumar LS, Ahern GP (2000) Induction of vanilloid receptor channel activity by protein kinase C. Nature 408:985–990

    CAS  PubMed  Google Scholar 

  59. Vellani V, Mapplebeck S, Moriondo A, Davis JB, McNaughton PA (2001) Protein kinase C activation potentiates gating of the vanilloid receptor VR1 by capsaicin, protons, heat and anandamide. J Physiol 534:813–825

    PubMed Central  CAS  PubMed  Google Scholar 

  60. Numazaki M, Tominaga T, Toyooka H, Tominaga M (2002) Direct phosphorylation of capsaicin receptor VR1 by PKCe and identification of two target serine residues. J Biol Chem 277:13375–13378

    CAS  PubMed  Google Scholar 

  61. De Petrocellis L, Harrison S, Bisogno T, Tognetto M, Brandi I, Smith GD, Creminon C, Davis JB, Geppetti P, DiMarzo V (2001) The vanilloid receptor (VR1)-mediated effects of anandamide are potently enhanced by the cAMP-dependent protein kinase. J Neurochem 77:1660–1663

    PubMed  Google Scholar 

  62. Lopshire JC, Nicol GD (1998) The cAMP transduction cascade mediates the prostaglandin E2 enhancement of the capsaicin-elicited current in rat sensory neurons: whole-cell and single-channel studies. J Neurosci 18:6081–6092

    CAS  PubMed  Google Scholar 

  63. Rathee PK, Distler C, Obreja O, Neuhuber GK, Wang SY, Wang C, Nau K, Kress M (2002) PKA/AKAP/VR-1 module: A common link of Gs-mediated signaling to thermal hyperalgesia. J Neurosci 22:4740–4745

    CAS  PubMed  Google Scholar 

  64. Liu B, Ma W, Ryu S, Qin F (2004) Inhibitory modulation of distal C-terminal on protein kinase C-dependent phospho-regulation of rat TRPV1 receptors. J Physiol 560:627–638

    PubMed Central  CAS  PubMed  Google Scholar 

  65. Cesare P, McNaughton P (1996) A novel heat-activated current in nociceptive neurons and its sensitization by bradykinin. Proc Natl Acad Sci USA 93:15435–15439

    PubMed Central  CAS  PubMed  Google Scholar 

  66. Chuang HH, Prescott ED, Kong H, Shields S, Jordt SE, Basbaum AI, Chao MV, Julius D (2001) Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition. Nature 411:957–962

    CAS  PubMed  Google Scholar 

  67. Prescott ED, Julius D (2003) A modular PIP2 binding site as a determinant of capsaicin receptor sensitivity. Science 300:1284–1288

    CAS  PubMed  Google Scholar 

  68. Di Marzo V, Blumberg PM, Szallasi A (2002) Endovanilloid signalling in pain. Curr Opin Neurobiol 12:372–379

    CAS  PubMed  Google Scholar 

  69. Planells-Cases R, Garcia-Sanz N, Morenilla-Palao C, Ferrer-Montiel A (2005) Functional aspects and mechanisms of TRPV1 involvement in neurogenic inflammation that leads to thermal hyperalgesia. Pflugers Arch 451:151–159

    CAS  PubMed  Google Scholar 

  70. Voets T, Nilius B (2007) Modulation of TRPs by PIPs. J Physiol 582:939–944

    PubMed Central  CAS  PubMed  Google Scholar 

  71. Cortright DN, Szallasi A (2004) Biochemical pharmacology of the vanilloid receptor TRPV1. An update. Eur J Biochem 271:1814–1819

    CAS  PubMed  Google Scholar 

  72. Morenilla-Palao C, Planells-Cases R, Garcia-Sanz N, Ferrer-Montiel A (2004) Regulated exocytosis contributes to protein kinase C potentiation of vanilloid receptor activity. J Biol Che 279:25665–25672

    CAS  Google Scholar 

  73. Amaya F, Shimosato G, Nagano M, Ueda M et al (2004) NGF and GDNF differentially regulate TRPV1 expression that contributes to development of inflammatory thermal hyperalgesia. Eur J Neurosci 20:2303–2310

    PubMed  Google Scholar 

  74. Bonnington JK, McNaughton PA (2003) Signalling pathways involved in the sensitisation of mouse nociceptive neurones by nerve growth factor. J Physiol 551:433–446

    PubMed Central  CAS  PubMed  Google Scholar 

  75. Zhang X, Huang J, McNaughton PA (2005) NGF rapidly increases membrane expression of TRPV1 heat-gated ion channels. EMBO J 24:4211–4223

    PubMed Central  CAS  PubMed  Google Scholar 

  76. Ganju P, Davis A, Patel S, Núñez X, Fox A (2001) p38 stress-activated protein kinase inhibitor reverses bradykinin B1 receptor-mediated component of inflammatory hyperalgesia. Eur J Pharmacol 421:191–199

    CAS  PubMed  Google Scholar 

  77. Hong S, Wiley JW (2005) Early painful diabetic neuropathy is associated with differential changes in the expression and function of vanilloid receptor 1. J Biol Chem 280:618–627

    CAS  PubMed  Google Scholar 

  78. Tympanidis P, Casula MA, Yiangou Y, Terenghi G, Dowd P, Anand P (2004) Increased vanilloid receptor VR1 innervation in vulvodynia. Eur J Pain 8:129–133

    CAS  PubMed  Google Scholar 

  79. Van Buren JJ, Bhat S, Rotello R, Pauza ME, Premkumar LS (2005) Sensitization and translocation of TRPV1 by insulin and IGF-I. Mol Pain 1:17

    PubMed Central  PubMed  Google Scholar 

  80. Lilja J, Laulund F, Insulin FA (2007) IGF-I up-regulate the vanilloid receptor (TRPV1) in stably TRPV1-expressing SH-SY5Y neuroblastoma cells. J Neurosci Res 85:1413–1419

    CAS  PubMed  Google Scholar 

  81. Camprubi-Robles M, Planells-Cases R, Ferrer-Montiel A (2009) Differential contribution of SNARE-dependent exocytosis to inflammatory potentiation of TRPV1 in nociceptors. Faseb J 23:3722–3733

    CAS  PubMed  Google Scholar 

  82. Kanzaki M, Zhang YQ, Mashima H, Li L, Shibata H, Kojima I (1999) Translocation of a calcium-permeable cation channel induced by insulin-like growth factor-I. Nat Cell Biol 1:165–170

    CAS  PubMed  Google Scholar 

  83. Penna A, Juvin V, Chemin J, Compan V, Monet M, Rassendren FA (2006) PI3-kinase promotes TRPV2 activity independently of channel translocation to the plasma membrane. Cell Calcium 39:495–507

    CAS  PubMed  Google Scholar 

  84. Liapi A, Wood JN (2005) Extensive co-localization and heteromultimer formation of the vanilloid receptor-like protein TRPV2 and the capsaicin receptor TRPV1 in the adult rat cerebral cortex. Eur J Neurosci 22:825–834

    PubMed  Google Scholar 

  85. Shimosato G, Amaya F, Ueda M, Tanaka Y, Decosterd I, Tanaka M (2005) Peripheral inflammation induces up-regulation of TRPV2 expression in rat DRG. Pain 119:225–232

    CAS  PubMed  Google Scholar 

  86. Akopian AN, Ruparel NB, Jeske NA, Hargreaves KM (2007) Transient receptor potential TRPA1 channel desensitization in sensory neurons is agonist dependent and regulated by TRPV1-directed internalization. J Physiol 583:175–193

    PubMed Central  CAS  PubMed  Google Scholar 

  87. Salas MM, Hargreaves KM, Akopian AN (2009) TRPA1-mediated responses in trigeminal sensory neurons: interaction between TRPA1 and TRPV1. Eur J Neurosci 29:1568–1578

    PubMed Central  PubMed  Google Scholar 

  88. Choudhary J, Grant SG (2004) Proteomics in postgenomic neuroscience: the end of the beginning. Nat Neurosci 7:440–445

    CAS  PubMed  Google Scholar 

  89. Sheng M, Sala C (2001) PDZ domains and the organization of supramolecular complexes. Annu Rev Neurosci 24:1–29

    CAS  PubMed  Google Scholar 

  90. Montell C (1998) TRP trapped in fly signaling web. Curr Opin Neurobiol 8:389–397

    CAS  PubMed  Google Scholar 

  91. Tsunoda S, Zuker CS (1999) The organization of INAD-signaling complexes by a multivalent PDZ domain protein in Drosophila photoreceptor cells ensures sensitivity and speed of signaling. Cell Calcium 26:165–171

    CAS  PubMed  Google Scholar 

  92. Dimitratos SD, Woods DF, Stathakis DG, Bryant PJ (1999) Signaling pathways are focused at specialized regions of the plasma membrane by scaffolding proteins of the MAGUK family. Bioessays 21:912–921

    CAS  PubMed  Google Scholar 

  93. Schillace RV, Scott JD (1999) Organization of kinases, phosphatases, and receptor signaling complexes. Clin Invest 103:761–765

    CAS  Google Scholar 

  94. Li HS, Montell C (2000) TRP and the PDZ protein, INAD, form the core complex required for retention of the signalplex in Drosophila photoreceptor cells. J Cell Biol 150:1411–1422

    PubMed Central  CAS  PubMed  Google Scholar 

  95. Tsunoda S, Sun Y, Suzuki E, Zuker C (2001) Independent anchoring and assembly mechanisms of INAD signaling complexes in Drosophila photoreceptors. J Neurosci 21:150–158

    CAS  PubMed  Google Scholar 

  96. Mery L, Strauss B, Dufour JF, Krause KH, Hoth M (2002) The PDZ-interacting domain of TRPC4 controls its localization and surface expression in HEK293 cells. J Cell Sci 115:3497–3508

    CAS  PubMed  Google Scholar 

  97. Kim AY, Tang Z, Liu Q, Patel KN et al (2008) Pirt, a phosphoinositide-binding protein, functions as a regulatory subunit of TRPV1. Cell 133:475–485

    PubMed Central  CAS  PubMed  Google Scholar 

  98. Böhmer C, Palmada M, Kenngott C, Lindner R, Klaus F, Laufer J, Lang F (2007) Regulation of the epithelial calcium channel TRPV6 by the serum and glucocorticoid-inducible kinase isoforms SGK1 and SGK3. FEBS Lett 581:5586–5590

    PubMed  Google Scholar 

  99. Embark HM, Setiawan I, Poppendieck S, van de Graaf SF, Boehmer C, Palmada M, Wieder T, Gerstberger R, Cohen P, Yun CC, Bindels RJ, Lang F (2004) Regulation of the epithelial Ca2+ channel TRPV5 by the NHE regulating factor NHERF2 and the serum and glucocorticoid inducible kinase isoforms SGK1 and SGK3 expressed in Xenopus oocytes. Cell Physiol Biochem 14:203–212

    CAS  PubMed  Google Scholar 

  100. van de Graaf SF, Hoenderop JG, van der Kemp AW, Gisler SM, Bindels RJ (2006) Interaction of the epithelial Ca2+ channels TRPV5 and TRPV6 with the intestine- and kidney-enriched PDZ protein NHERF4. Pflugers Arch 452:407–417

    CAS  PubMed  Google Scholar 

  101. Dell’Acqua ML, Smith KE, Gorski JA, Horne EA, Gibson ES, Gomez LL (2006) Regulation of neuronal PKA signaling through AKAP targeting dynamics. Eur J Cell Biol 85:627–633

    PubMed  Google Scholar 

  102. Schnizler K, Shutov LP, Van Kanegan MJ, Merrill MA, Nichols B, McKnight GS, Strack S, Hell JW, Usachev YM (2008) Protein kinase A anchoring via AKAP150 is essential for TRPV1 modulation by forskolin and prostaglandin E2 in mouse sensory neurons. J Neurosci 28:4904–4917

    PubMed Central  CAS  PubMed  Google Scholar 

  103. Stanchev D, Blosa M, Milius D, Gerevich Z, Rubini P, Schmalzing G, Eschrich K, Schaefer M, Wirkner K, Illes P (2009) Cross-inhibition between native and recombinant TRPV1 and P2X3 receptors. Pain 143:26–36

    CAS  PubMed  Google Scholar 

  104. Goswami C, Dreger M, Jahnel R, Bogen O et al (2004) Identification and characterization of a Ca2+-sensitive interaction of the vanilloid receptor TRPV1 with tubulin. J Neurochem 91:1092–1103

    CAS  PubMed  Google Scholar 

  105. Krapivinsky G, Mochida S, Krapivinsky L, Cibulsky SM, Clapham DE (2006) The TRPM7 ion channel functions in cholinergic synaptic vesicles and affects transmitter release. Neuron 52:485–496

    CAS  PubMed  Google Scholar 

  106. Singh BB, Lockwich TP, Bandyopadhyay BC, Liu X, Bollimuntha S, Brazer SC, Combs C, Das S, Leenders AG, Sheng ZH, Knepper MA, Ambudkar SV, Ambudkar IS (2004) VAMP2-dependent exocytosis regulates plasma membrane insertion of TRPC3 channels and contributes to agonist-stimulated Ca2+ influx. Mol Cell 15:635–646

    CAS  PubMed  Google Scholar 

  107. Barnhill JC, Stokes AJ, Koblan-Huberson M, Shimoda LM, Muraguchi A, Adra CN, Turner H (2004) RGA protein associates with a TRPV ion channel during biosynthesis and trafficking. J Cell Biochem 91:808–820

    CAS  PubMed  Google Scholar 

  108. Stokes AJ, Wakano C, Del Carmen KA, Koblan-Huberson M, Turner H (2005) Formation of a physiological complex between TRPV2 and RGA protein promotes cell surface expression of TRPV2. J Cell Biochem 94:669–683

    CAS  PubMed  Google Scholar 

  109. Cuajungco MP, Grimm C, Oshima K, D’hoedt D, Nilius B, Mensenkamp AR, Bindels RJ, Plomann M, Heller S (2006) PACSINs bind to the TRPV4 cation channel. PACSIN3 modulates the subcellular localization of TRPV4. J Biol Chem 281:18753–18762

    CAS  PubMed  Google Scholar 

  110. D’hoedt D, Owsianik G, Prenen J, Cuajungco MP, Grimm C, Heller S, Voets T, Nilius B (2008) Stimulus-specific modulation of the cation channel TRPV4 by PACSIN 3. J Biol Chem 283:6272–6280

    PubMed  Google Scholar 

  111. Suzuki M, Hirao A, Mizuno A (2003) Microtubule-associated [corrected] protein 7 increases the membrane expression of transient receptor potential vanilloid 4 (TRPV4). J Biol Chem 278:51448–51453

    CAS  PubMed  Google Scholar 

  112. Wang H, Bedford FK, Brandon NJ, Moss SJ, Olsen RW (1999) GABA(A)-receptor-associated protein links GABA(A) receptors and the cytoskeleton. Nature 397:69–72

    CAS  PubMed  Google Scholar 

  113. Laínez S, Valente P, Ontoria-Oviedo I, Estévez-Herrera J, Camprubí-Robles M, Ferrer-Montiel A, Planells-Cases R (2010) GABAA receptor associated protein (GABARAP) modulates TRPV1 expression and channel function and desensitization. FASEB J. 19:1745–1756

    Google Scholar 

  114. Sun H, Hu XQ, Emerit MB, Schoenebeck JC, Kimmel CE, Peoples RW, Miko A, Zhang L (2008) Modulation of 5-HT3 receptor desensitization by the light chain of microtubule-associated protein 1B expressed in HEK 293 cells. J Physiol 586:751–762

    PubMed Central  CAS  PubMed  Google Scholar 

  115. Chen C, Li JG, Chen Y, Huang P, Wang Y, Liu-Chen LY (2006) GEC1 interacts with the kappa opioid receptor and enhances expression of the receptor. J Biol Chem 281:7983–7993

    CAS  PubMed  Google Scholar 

  116. Cook JL, Re RN, deHaro DL, Abadie JM, Peters M, Alam J (2008) The trafficking protein GABARAP binds to and enhances plasma membrane expression and function of the angiotensin II type 1 receptor. Circ Res 102:1539–1547

    PubMed Central  CAS  PubMed  Google Scholar 

  117. Reining SC, Gisler SM, Fuster D, Moe OW et al (2009) GABARAP deficiency modulates expression of NaPi-IIa in renal brush-border membranes. Am J Physiol Renal Physiol 296:F1118–F1128

    PubMed Central  CAS  PubMed  Google Scholar 

  118. Kittler JT, Rostaing P, Schiavo G, Fritschy JM, Olsen R, Triller A, Moss SJ (2001) The subcellular distribution of GABARAP and its ability to interact with NSF suggest a role for this protein in the intracellular transport of GABAA receptors. Mol Cell Neurosci 18:13–25

    CAS  PubMed  Google Scholar 

  119. Mohrluder J, Hoffmann Y, Stangler T, Hanel K, Willbold D (2007) Identification of clathrin heavy chain as a direct interaction partner for the gamma-aminobutyric acid type A receptor associated protein. Biochemistry 46:14537–14543

    PubMed  Google Scholar 

  120. Chen L, Wang H, Vicini S, Olsen RW (2000) The gamma-aminobutyric acid type A (GABAA) receptor-associated protein (GABARAP) promotes GABAA receptor clustering and modulates the channel kinetics. Proc Natl Acad Sci USA 97:11557–11562

    PubMed Central  CAS  PubMed  Google Scholar 

  121. Marsden KC, Beattie JB, Friedenthal J, Carroll RC (2007) NMDA receptor activation potentiates inhibitory transmission through GABA receptor-associated protein-dependent exocytosis of GABAA receptors. J Neurosci 27:14326–14337

    CAS  PubMed  Google Scholar 

  122. Kawaguchi SY, Hirano T (2007) Sustained structural change of GABAA receptor-associated protein underlies long-term potentiation at inhibitory synapses on a cerebellar Purkinje neuron. J Neurosci 27:6788–6799

    CAS  PubMed  Google Scholar 

  123. Moran MM, Szallasi A (eds) (2010) TRP channels as drug targets. The Open Dug Discov J 2(suppl)

    Google Scholar 

  124. Szallasi A (ed) (2010) TRP channels in health and disease: implications for diagnosis and therapy. Nova, Hauppauge, NY

    Google Scholar 

  125. Noto C, Pappagallo M, Szallasi A (2009) NGX-4010, a high-concentration capsaicin dermal patch for lasting relief of peripheral neuropathic pain. Curr Opin Invest Drugs 10:702–710

    CAS  Google Scholar 

  126. Remadevi R, Szallasi A (2008) Adlea (ALGRX-4975), an injectable capsaicin (TRPV1 receptor agonist) formulation for long-lasting pain relief. IDrugs 11:120–132

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from el Ministerio de Ciencia e Innovación (MICINN) (BFU2009-08346 to A.F.-M. and SAF2007-63193 to R.P.-C.); the Consolider-Ingenio 2010 (MICINN, CSD2008-00005 to A.F.-M and R.P.-C.), la Fundació La Marató de TV3 (to A.F.-M and R.P.-C.).

Support for Dr. Qin was by NIH GM65994. We thank Dr. Azucena Perez Burgos for creating Figures 1, 2 and 3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arpad Szallasi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Planells-Cases, R., Valente, P., Ferrer-Montiel, A., Qin, F., Szallasi, A. (2011). Complex Regulation of TRPV1 and Related Thermo-TRPs: Implications for Therapeutic Intervention. In: Islam, M. (eds) Transient Receptor Potential Channels. Advances in Experimental Medicine and Biology, vol 704. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0265-3_27

Download citation

Publish with us

Policies and ethics