Skip to main content

Gating Mechanisms of Canonical Transient Receptor Potential Channel Proteins: Role of Phosphoinositols and Diacylglycerol

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 704))

Abstract

Canonical transient receptor potential (TRPC) Ca2+-permeable channels are members of the mammalian TRP super-family of cation channels, and have the closest homology to the founding members, TRP and TRPL, discovered in Drosophila photoreceptors. The TRPC subfamily is composed of 7 subunits (C1–C7, with TRPC2 a pseudogene in humans), which can all combine with one another to form homomeric and heteromeric structures. This review focuses on mechanisms involved in opening TRPC channels (i.e. gating mechanisms). It initially describes work on the involvement of phosphatidylinositol-4,5-bisphosphate (PIP2) and diacylglycerol (DAG) in gating TRP and TRPL channels in Drosophila, and then discusses evidence that similar gating mechanisms are involved in opening mammalian TRPC channels. It concludes that there are two common activation pathways of mammalian TRPC channels. Non-TRPC1-containing channels are opened by interactions between DAG, the direct activating ligand, and PIP2, which acts as a physiological antagonist at TRPC proteins. Competitive interactions between an excitatory effect of DAG and an inhibitory action of PIP2 can also be modulated by IP3 acting via an IP3 receptor-independent mechanism. In contrast TRPC1-containing channels are gating by PIP2, which requires PKC-dependent phosphorylation of TRPC1 proteins.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ramsey S, Delling M, Clapham DE (2006) An introduction to TRP channels. Annu Rev Physiol 68:614–647

    Google Scholar 

  2. Estacion M, Sinkins WG, Jones SW, Applegate MA, Schilling WP (2006) Human TRPC6 expressed in HEK 293 cells forms non-selective cation channels with limited Ca2+ permeability. J Physiol 572:359–377

    PubMed Central  CAS  PubMed  Google Scholar 

  3. Birnbaumer L (2009) The TRPC class of ion channels: a critical review of their roles in slow, sustained increases in intracellular Ca(2+) concentrations. Annu Rev Pharmacol Toxicol 49:395–426

    CAS  PubMed  Google Scholar 

  4. Abramowitz J, Birnbaumer L (2009) Physiology and pathophysiology of canonical transient receptor potential channels. FASEB J 23:297–328

    PubMed Central  CAS  PubMed  Google Scholar 

  5. Nilius B, Owsianik G, Voets T, Peters JA (2005) Transient receptor potential channels in disease. Physiol Rev 87:165–217

    Google Scholar 

  6. Hisatsune C, Kuroda Y, Nakamura K, Inoue T, Nakamura T, Michikawa T, Mizutani A, Mitkoshiba A (2004) Regulation of TRPC6 channel activity by tyrosine phosphorylation. J Biol Chem 279:18887–18894

    CAS  PubMed  Google Scholar 

  7. Vazquez G, Wedel BJ, Kawasaki BT, Bird GS, Putney JW Jr (2004) Obligatory role of Src kinase in the signalling mechanisms for TRPC3 cation channels. J Biol Chem 279:40521–40528

    CAS  PubMed  Google Scholar 

  8. Trebak M, Hempel M, Wedel BJ, Smyth JT, Bird GJ, Putney JW (2005) Negative regulation of TRPC3 channels by protein kinase C-mediated phosphorylation of serine 712. Mol Pharmacol 67:558–563

    CAS  PubMed  Google Scholar 

  9. Takahashi S, Lin H, Geshi N, Mori Y, Kawarabayashi Y, Takami N, Mori MX, Honda A, Inoue R (2009) Nitric oxide-cGMP-protein kinase G pathway negatively regulates vascular transient receptor potential channel TRPC6. J Physiol 586:4209–4223

    Google Scholar 

  10. Koitabashi N, Aiba T, Hesketh GG, Rowell J, Zhang M, Takimoto E, Tomaselli GF, Kass DA (2010) Cyclic GMP/PKG-dependent inhibition of TRPC6 channel activity and expression negatively regulates cardiomyocyte NFAT activation Novel mechanism of cardiac stress modulation by PDE5 inhibition. J Mol Cell Cardiol 48:713–724

    PubMed Central  CAS  PubMed  Google Scholar 

  11. Nishida M, Watanabe K, Sato Y, Nakaya M, Kitajima N, Ide T, Inoue R, Kurose H (2010) Phosphorylation of TRPC6 channels at Thr69 is required for anti-hypertrophic effects of phosphodiesterase 5 inhibition. J Biol Chem 285:13244–13253

    PubMed Central  CAS  PubMed  Google Scholar 

  12. Zhu MX (2005) Multiple roles of calmodulin and other Ca2+-binding proteins in the functional regulation of TRP channels. Pflugers Arch 451:105–115

    CAS  PubMed  Google Scholar 

  13. Kwon Y, Hofmann T, Montell C (2007) Integration of phosphoinositide- and calmodulin-mediated regulation of TRPC6. Mol Cell 25:491–503

    PubMed Central  CAS  PubMed  Google Scholar 

  14. Friedlova E, Grycova L, Holakovska B, Silhan J, Janouskova H, Sulc M, Obsilova V, Obsil T, Teisinger J (2010) The interactions of the C-terminal region of the TRPC6 channel with calmodulin. Neurochem Int 56:363–366

    CAS  PubMed  Google Scholar 

  15. Goel M, Sinkins WG, Schilling WP (2002) Selective association of TRPC channel subunits in rat brain synaptosomes. J Biol Chem 277:48303–48310

    CAS  PubMed  Google Scholar 

  16. Hofmann T, Schaefer M, Schultz G, Gudermann T (2002) Subunit composition of mammalian transient receptor potential channel in living cells. PNAS 99:7461

    PubMed Central  CAS  PubMed  Google Scholar 

  17. Strubing C, Krapivinsky G, Krapivinsky L, Clapham DE (2002) Formation of novel TRPC channels by complex subunit interactions in embryonic brain. J Biol Chem 278:39014–39019

    Google Scholar 

  18. Wu X, Zagranichnaya TK, Gurda GT, Eves EM, Villereal MLA (2004) TRPC1/TRPC3-mediated increase in store-operated calcium entry is required for differentiation of H19-7 hippocampal neuronal cells. J Biol Chem 279:43392–43402

    CAS  PubMed  Google Scholar 

  19. Liu X, Bandyopadhyay BC, Singh BB, Groschner K, Ambudkar IS (2005) Molecular analysis of a store-operated and 2-acetyl-sn-glycerol-sensitive non-selective cation channel. Heteromeric assembly of TRPC1-TRPC3. J Biol Chem 280: 21600–21606

    CAS  PubMed  Google Scholar 

  20. Antoniotti S, Fiorio Pla A, Barral S, Scalabrino O, Munaron L, Lovisolo D (2006) Interaction between TRPC channel subunits in endothelial cells. J Recept Signal Transduct Res 26:225–240

    CAS  PubMed  Google Scholar 

  21. Sours S, Du J, Chu S, Ding M, Zhou XJ, Ma R (2006) Expression of canonical transient receptor potential (TRPC) proteins in human glomerular mesangial cells. Am J Physiol 290:F1507–F1515

    CAS  Google Scholar 

  22. Sours-Brothers S, Ding M, Graham S, Ma R (2009) Interaction between TRPC1/TRPC4 assembly and STIM1 contributes to store-operated Ca2+ entry in mesangial cells. Exp Biol Med 234:673–682

    CAS  Google Scholar 

  23. Strubing C, Krapivinsky G, Krapivinsky L, Clapham DE (2001) TRPC1 and TRPC5 form a novel cation channel in mammalian brain. Neuron 29:645–655

    CAS  PubMed  Google Scholar 

  24. Saleh SN, Albert AP, Peppiatt-Wildman CM, Large WA (2008) Diverse properties of store-operated TRPC channels activated by protein kinase C in vascular myocytes. J Physiol 586:2463–2476

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Xu SZ, Beech DJ (2001) TrpC1 is a membrane-spanning subunit of store-operated Ca2+ channels in native vascular smooth muscle cells. Circ Res 88:84–87

    CAS  PubMed  Google Scholar 

  26. Xu SZ, Boulay G, Flemming R, Beech DJ (2006) E3-targeted anti-TRPC5 antibody inhibits store-operated calcium entry in freshly isolated pial arterioles. Am J Physiol 291:H2653–H2659

    CAS  Google Scholar 

  27. Zagranichnaya TK, Wu X, Villereal ML (2005) Endogenous TRPC1, TRPC3, and TRPC7 proteins combine to form native store-operated channels in HEK-293 cells. J Biol Chem 280:29559–29569

    CAS  PubMed  Google Scholar 

  28. Brownlow SL, Sage SO (2005) Transient receptor potential protein subunit assembly and membrane distribution in human platelets. Thromb Haemost 94:839–845

    PubMed  Google Scholar 

  29. Bai CX, Giamarchi A, Rodat-Despoix L, Padilla F, Downs T, Tsiokas L, Delmas P (2009) Formation of a new receptor-operated channel by heteromeric assembly of TRPP2 and TRPC1 subunits. EMBO J 9:472–479

    Google Scholar 

  30. Kobori T, Smith GD, Sandford R, Edwardson JM (2009) The transient receptor potential channels TRPP2 and TRPC1 form a heterotetramer with a 2:2 stoichiometry and an alternating subunit arrangement. J Biol Chem 284:35507–35513

    PubMed Central  CAS  PubMed  Google Scholar 

  31. Zhang P, Luo Y, Chasan B, González-Perrett S, Montalbetti N, Timpanaro GA, Cantero Mdel R, Ramos AJ, Goldmann WH, Zhou J, Cantiello HF (2009) The multimeric structure of polycystin-2 (TRPP2): structural-functional correlates of homo- and hetero-multimers with TRPC1. Hum Mol Genet 18:1238–1251

    PubMed Central  CAS  PubMed  Google Scholar 

  32. Poteser M, Graziani A, Rosker C, Eder P, Derler I, Kahr H, Zhu MX, Romanin C, Groschner K (2006) TRPC3 and TRPC4 associate to form a redox-sensitive cation channel. Evidence for expression of native TRPC3-TRPC4 heteromeric channels in endothelial cells. J Biol Chem 281:13588–13595

    CAS  PubMed  Google Scholar 

  33. Peppiatt-Wildman CM, Albert AP, Saleh SN, Large WA (2007) Endothelin-1 activates a Ca2+-permeable cation channel with TRPC3 and TRPC7 properties in rabbit coronary artery myocytes. J Physiol 580:755–764

    PubMed Central  CAS  PubMed  Google Scholar 

  34. Miyagi K, Kiyonaka S, Yamada K, Miki T, Mori E, Kato K, Numata T, Sawaguchi Y, Numaga T, Kimura T, Kanai Y, Kawano M, Wakamori M, Nomura H, Koni I, Yamagishi M, Mori Y (2009) A pathogenic C terminus-truncated polycystin-2 mutant enhances receptor-activated Ca2+ entry via association with TRPC3 and TRPC7. J Biol Chem 49:34400–34412

    Google Scholar 

  35. Maruyama Y, Nakanishi Y, Walsh EJ, Wilson DP, Welsh DG, Cole WC (2006) Heteromultimeric TRPC6-TRPC7 channels contribute to arginine vasopressin-induced cation current of A7r5 vascular smooth muscle cells. Circ Res 98:1520–1527

    CAS  PubMed  Google Scholar 

  36. Ju M, Shi J, Saleh SN, Albert AP, Large WA (2010) Ins(1,4,5)P3 interacts with PIP2 to regulate activation of TRPC6/C7 channels by diacylglycerol in native vascular myocytes. J Physiol 588:1419–1433

    PubMed Central  CAS  PubMed  Google Scholar 

  37. Van Breemen C, Aaronson P, Loutzenhiser R (1978) Sodium-calcium interactions in mammamlian smooth muscle. Pharmacol Rev 30:167–208

    PubMed  Google Scholar 

  38. Bolton TB (1979) Mechanisms of transmitters and other substances on smooth muscle. Physiol Rev 59:606–718

    CAS  PubMed  Google Scholar 

  39. Luik RM, Wu MM, Buchanan J, Lewis RS (2006) The elementary unit of store-operated Ca2+ entry: local activation of CRAC channels by STIM1 at ER-plasma membrane junctions. J Cell Biol 174:815–825

    PubMed Central  CAS  PubMed  Google Scholar 

  40. Peinelt C, Vig M, Koomoa DL, Beck A, Nadler MJ, Koblan-Huberson M, Lis A, Fleig A, Penner R, Kinet JP (2006) Amplication of CRAC current by STIM1 and CRACM1 (Orai1). Nat Cell Biol 8:771–773

    CAS  PubMed  Google Scholar 

  41. Prakriya M, Feske S, Gwack Y, Srikanth S, Rai A, Hogan RG (2006) Orai1 is an essential pore subunit of the CRAC channel. Nature 443:230–233

    CAS  PubMed  Google Scholar 

  42. Spassova MA, Soboloff J, He LP, Xu W, Dziadek MA, Gill DL (2006) STIM1 has a plasma membrane role in the activation of store-operated Ca2+ channels. PNAS 103:4040–4045

    PubMed Central  CAS  PubMed  Google Scholar 

  43. Yeromin AV, Zhang SL, Jiang W, Yu Y, Safrina O, Cahalan MD (2006) Molecular identification of the CRAC channel by altered ion selectivity in a mutant of Orai. Nature 443:226–229

    PubMed Central  CAS  PubMed  Google Scholar 

  44. Vig M, Peinelt C, Beck A, Koomoa DL, Rabah D, Koblan-Huberson M, Kraft S, Turner H, Fleig A, Penner R, Kinet JP (2006) CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science 312:1220–1223

    CAS  PubMed  Google Scholar 

  45. Huang GN, Zheng W, Kim JY, Yuan JP, Han L, Muallem S, Worley PF (2006) STIM1 caroxyl-terminus activates native SOC, I(crac) and TRPC1 channels. Nat Cell Biol 8:1003–1010

    CAS  PubMed  Google Scholar 

  46. Ong HL, Cheng KT, Liu X, Bandyopadhyay BC, Paria BC, Soboloff J, Pani B, Gwack Y, Srikanth S, Singh BB, Gill DL, Ambudkar IS (2007) Dynamic assembly of TRPC1-STIM-Orai1 ternary complex is involved in store-operated calcium influx. Evidence for similarities in store-operated and calcium release-activated calcium channel components. J Biol Chem 282:9105–9116

    PubMed Central  CAS  PubMed  Google Scholar 

  47. Cheng KT, Liu X, Ong HL, Ambudkar IS (2008) Functional requirement for Orai1 in store-operated TRPC1-STIM1 channels. J Biol Chem 9:12935–12940

    Google Scholar 

  48. Yuan JP, Zheng W, Huang GN, Worley PN, Muallem S (2007) STIM1 heteromultimerozes TRPC channels to determine their function as store-operated channels. Nat Cell Biol 9:636–645

    PubMed Central  CAS  PubMed  Google Scholar 

  49. Cahalan MD (2009) STIMulating store-operated Ca2+ entry. Nat Cell Biol 11:669–677

    PubMed Central  CAS  PubMed  Google Scholar 

  50. Albert AP, Large WA (2002) Activation of store-operated channels by noradrenaline via protein kinase C in rabbit portal vein myocytes. J Physiol 544:113–125

    PubMed Central  CAS  PubMed  Google Scholar 

  51. Large WA, Saleh SN, Albert AP (2009) Role of phosphoinositol 4,5-bisphosphate and diacylglycerol in regulating native TRPC channel proteins in vascular smooth muscle. Cell Calcium 45:574–582

    CAS  PubMed  Google Scholar 

  52. Albert AP, Saleh SN, Large WA (2009) Identification of canonical transient receptor potential (TRPC) channel proteins in native vascular smooth muscle cells. Curr Med Chem 16:1158–1165

    CAS  PubMed  Google Scholar 

  53. Montell C (2005) TRP channels in Drosophila photoreceptor cells. J Physiol 567:45–51

    PubMed Central  CAS  PubMed  Google Scholar 

  54. Minke B, Parnas M (2006) Insights on TRP channels from in vivo studies in Drosophila. Annu Rev Physiol 68:649–684

    PubMed Central  CAS  PubMed  Google Scholar 

  55. Hardie RC (2007) TRP channels and lipids: from Drosophila to mammalian physiology. J Physiol 578:9–24

    PubMed Central  CAS  PubMed  Google Scholar 

  56. Katz B, Minke B (2009) Drosophila photoreceptors and signaling mechanisms. Front Cell Neurosci 3:1–14

    Google Scholar 

  57. Xu XZ, Chien F, Butler A, Salkoff L, Montell C (2000) TRPgamma, a Drosophila TRP-related subunit, forms a regulated cation channel with TRPL. Neuron 26:647–657

    CAS  PubMed  Google Scholar 

  58. Hardie RC (2003) Regulation of TRPC channels by lipid second messengers. Ann Rev Physiol 65:735–759

    CAS  Google Scholar 

  59. Bloomquist BT, Shortridge RD, Schneuwly S, Perdew M, Montell C, Stellar H, Rubin G, Pak WL (1988) Isolation of a putative phospholipase C gene of Drosophila, norpA, and its role in phototransuction. Cell 54:723–733

    CAS  PubMed  Google Scholar 

  60. Hardie RC, Raghu P (1998) Activation of heterologously expressed Drosophila TRPL channels: Ca2+ is not required and InsP3 is not sufficient. Cell Calcium 24:153–163

    CAS  PubMed  Google Scholar 

  61. Acharya JK, Jalink K, Hardy RW, Hartenstein V, Zuker CS (1997) InsP3 receptor is essential for growth and differentiation but not for vision in Drosophila. Neuron 18:881–887

    CAS  PubMed  Google Scholar 

  62. Raghu P, Colley NJ, Webel R, James T, Hasan G, Danin M, Slinger Z, Hardie RC (2000) Normal phototransduction in Drosophila photoreceptors lacking an InsP3 receptor gene. Mol Cell Neurosci 15:429–445

    CAS  PubMed  Google Scholar 

  63. Hardie RC (1995) Photolysis of caged Ca2+ facilitates and inactivates but does not directly excite light-sensitive channels in Drosophila photoreceptors. J Neurosci 15:889–902

    CAS  PubMed  Google Scholar 

  64. Parnas M, Katz B, Minke B (2007) Open channel block by Ca2+ underlies the voltage dependence of Drosophila TRPL channel. J Gen Physiol 129:17–28

    PubMed Central  CAS  PubMed  Google Scholar 

  65. Hardie RC, Peretz A, Suss-Toby E, Rom-Glas A, Bishop SA, Selinger Z, Minke B (1993) Protein kinase C is required for light adaption in Drosophila photoreceptors. Nature 363:634–637

    CAS  PubMed  Google Scholar 

  66. Chyb S, Raghu P, Hardie RC (1999) Polyunsaturated fatty acids activate the Drosophila light-sensitive channels TRP and TRPL. Nature 397:255–259

    CAS  PubMed  Google Scholar 

  67. Raghu P, Usher K, Jonas S, Chyb S, Polyanovsky A, Hardie RC (2000) Constitutive activity of the light-sensitive channels TRP and TRPL in the Drosophila diacylglycerol kinase mutant, rdgA. Neuron 26:169–179

    CAS  PubMed  Google Scholar 

  68. Delgado R, Bacigalupo J (2009) Unitary recordings of TRP and TRPL channels from isolated Drosophila retinal phostoreceptor rhabdomeres: activation by light and lipids. J Neurophysiol 101:2372–2379

    CAS  PubMed  Google Scholar 

  69. Kwon Y, Montell C (2006) Dependence on the Lazaro phosphatidic acid phoshatase for the maximum light response. Curr Biol 16:723–729

    CAS  PubMed  Google Scholar 

  70. Estacion M, Sinkins WG, Schilling WP (2001) Regulation of Drosophila transient receptor potential-like (TrpL) channels by phospholipase C-dependent mechanisms. J Physiol 530: 1–19

    PubMed Central  CAS  PubMed  Google Scholar 

  71. Hardie RC, Raghu P, Moore S, Juusola M, Baines RA, Sweeney ST (2001) Calcium influx via TRP channels is required to maintain PIP2 levels in Drosophila photoreceptors. Neuron 30:149–159

    CAS  PubMed  Google Scholar 

  72. Parnas M, Katz B, Lev S, Tzarfaty V, Dadon D, Gordon-Shagg A, Metzner H, Yaka R, Minke B (2009) Membrane lipid modulations remove dilvant open channel block from TRP-like and NMDA channels. J Neurosci 29:2371–2383

    PubMed Central  CAS  PubMed  Google Scholar 

  73. Jors S, Kazanki V, Foik A, Krautwurst D, Harteneck C (2006) Receptor-induced activation of Drosophila TRPγ by polyunsaturated fatty acids. J Biol Chem 281:29693–29702

    PubMed  Google Scholar 

  74. Huang J, Liu CH, Hughes SA, Postma M, Schwiening CJ, Hardie RC (2010) Activation of TRP channels by protons and phosphoinositide depletion in Drosophila photoreceptors. Curr Biol 20:189–197

    CAS  PubMed  Google Scholar 

  75. Leung HT, Tseng-Crank J, Kim E, Mahapatra C, Shino S, Zhou Y, An L, Doerge RW, Pak WL (2008) DAG lipase activity is necessary for TRP channel regulation in Drosophila photoreceptors. Neuron 58:884–896

    PubMed Central  CAS  PubMed  Google Scholar 

  76. Helliwell RM, Large WA (1997) α1-adrenoceptor activation of a non-selective cation current in rabbit portal vein by 1,2-diacyl-sn-glycerol. J Physiol 499:417–428

    PubMed Central  CAS  PubMed  Google Scholar 

  77. Hofmann T, Obukhov AG, Schaefer M, Harteneck C, Gudermann T, Schultz G (1999) Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature 397:259–263

    CAS  PubMed  Google Scholar 

  78. Okada T, Inoue R, Yamazaki K, Maeda A, Kurosaki T, Yamakuni T, Tanaka I, Shimizu S, Ikenaka K, Imoto K, Mori Y (1999) Molecular and functional characterisation of a novel mouse transient receptor potential protein homologue TRP7. Ca2+-permeable cation channel that is constitutively activated and enhanced by stimulation of G-protein-coupled receptor. J Biol Chem 274:27359–27370

    CAS  PubMed  Google Scholar 

  79. Trebak M, St J Bird G, McKay RR, Birnbaumer L, Putney JW Jr (2003) Signaling mechanism for receptor-activated canonical transient receptor potential 3 (TRPC3). J Biol Chem 278:16244–16252

    CAS  PubMed  Google Scholar 

  80. Estacion M, Li S, Sinkins WG, Gosling M, Bahra P, Poll C, Westwick J, Schilling WP (2004) Activation of human TRPC6 channels by receptor stimulation. J Biol Chem 279:22047–22056

    CAS  PubMed  Google Scholar 

  81. Shi J, Mori E, Mori Y, Mori M, Li J, Ito Y, Inoue R (2004) Multiple regulation by calcium of murine homologues of transient receptor potential proteins TRPC6 and TRPC7 expressed in HEK293 cells. J Physiol 561:415–432

    PubMed Central  CAS  PubMed  Google Scholar 

  82. Inoue R, Okada T, Onoue H, Harea Y, Shimizu S, Naitoh S, Ito Y, Mori Y (2001) The transient receptor potential protein homologue TRP6 is the essential component of vascular α-adrenoceptor-activated Ca2+-permeable cation channel. Circ Res 88:325–337

    CAS  PubMed  Google Scholar 

  83. Ventaktachalam K, Zheng F, Gill DL (2003) Regulation of canonical transient receptor potential (TRPC) channel function by diacylglycerol and protein kinase C. J Biol Chem 278:29031–29040

    Google Scholar 

  84. Albert AP, Large WA (2004) Inhibitory regulation of constitutive transient receptor potential-like cation channels in rabbit ear artery myocytes. J Physiol 560:169–180

    PubMed Central  CAS  PubMed  Google Scholar 

  85. Albert AP, Piper AS, Large WA (2005) Role of phospholipase D and diacylglycerol in activating constitutive TRPC-like cation channels in rabbit ear artery myocytes. J Physiol 566:769–780

    PubMed Central  CAS  PubMed  Google Scholar 

  86. Albert AP, Pucovsky V, Prestwich SA, Large WA (2006) TRPC3 properties of a native constitutively active Ca2+-permeable cation channel in rabbit ear artery myocytes. J Physiol 571:361–369

    PubMed Central  CAS  PubMed  Google Scholar 

  87. Kwan HY, Wong CO, Chen ZY, Dominic Chan TW, Huang Y, Yao X (2009) Stimulation of histamine H2 receptors activates TRPC3 channels through both phospholipase C and phospholipase D. Eur J Pharmacol 602:181–187

    CAS  PubMed  Google Scholar 

  88. Glitsch MD (2010) Activation of native TRPC3 cation channels by phospholipase D. FASEB J 24:318–325

    PubMed  Google Scholar 

  89. Kiselyov K, Xu X, Mozhayeva G, Kuo T, Pessah I, Migery G, Zhu X, Burnbaumer L, Muallem S (1998) Functional interaction between InsP3 receptors and store-operated Htrp3 channels. Nature 396:478–482

    CAS  PubMed  Google Scholar 

  90. Ma HT, Patterson RL, van Rossum DB, Birnbaumer L, Mikoshiba K, Gill DL (2001) Requirement of the inositol trisphosphate receptor for activation of store-operated Ca2+ channels. Science 287:1647–1651

    Google Scholar 

  91. Vazquez G, Lievremont JP, St J Bird G, Putney JW Jr (2001) Human Trp3 forms both inositol trisphosphate receptor-dependent and receptor-independent store-operated cation channels in DT40 avian B lymphocytes. PNAS 98:11777–11782

    PubMed Central  CAS  PubMed  Google Scholar 

  92. Vazquez G, Bird GS, Mori Y, Putney JW Jr (2006) Native TRPC7 channel activation by an inositol trisphosphate receptor-dependent mechanism. J Biol Chem 281: 25250–25258

    PubMed Central  CAS  PubMed  Google Scholar 

  93. Vazquez G, Wedel BJ, Trebak M, St John Bird G, Putney JW Jr (2003) Expression levels of the canonical transient receptor potential 3 (TRPC3) channel determines it’s mechanism of activation. J Biol Chem 278:21649–21654

    CAS  PubMed  Google Scholar 

  94. Venkatachalam K, Ma HT, Ford DL, Gill DL (2001) Expression of functional receptor-coupled TRPC3 channels in DT40 triple receptor InsP3 knockout cells. J Biol Chem 276:33980–33985

    CAS  PubMed  Google Scholar 

  95. Xi Q, Adebiyi A, Zhao G, Chapman KE, Waters CM, Hassied A, Jaggar JH (2008) IP3 constricts cerebral arteries via IP3 receptor-mediated TRPC3 channel activation and independently of sarcoplasmic reticulum Ca2+ release. Circ Res 102:1118–1126

    PubMed Central  CAS  PubMed  Google Scholar 

  96. Zhao G, Adebiyi A, Blaskova E, Xi Q, Jaggar JH (2008) Type 1 inositol 1,4,5-trisphosphate receptors mediate UTP-induced cation currents, Ca2+ signals, and vasoconstriction in cerebral arteries. Am J Physiol Cell Physiol 295:C1376–C1384

    PubMed Central  CAS  PubMed  Google Scholar 

  97. Albert AP, Large WA (2003) Synergism between inositol phosphates and diacylglycerol on native TRPC6-like channels in rabbit portal vein myocytes. J Physiol 552: 789–795

    PubMed Central  CAS  PubMed  Google Scholar 

  98. Albert AP, Saleh SN, Large WA (2008) Inhibition of native TRPC6 channel activity by phosphatidylinositol-4, 5-bisphosphate in mesenteric artery myocytes. J Physiol 586:3087–3095

    PubMed Central  CAS  PubMed  Google Scholar 

  99. Tseng PH, Lin HP, Hu H, Wang C, Zhu MX, Chen CS (2004) The canonical transient receptor potential 6 channel as a putative phosphatidylinositol-3,4,5-trisphosphate-sensitive calcium entry system. Biochemistry 43:11701–11708

    CAS  PubMed  Google Scholar 

  100. Lemonnier L, Trebak M, Putney JW Jr (2007) Complex regulation of the TRPC3, 6 and 7 channel subfamily by diacylglycerol and phosphatidylinositol-4, 5-bisphosphate. Cell Calcium 43:506–514

    PubMed Central  PubMed  Google Scholar 

  101. Schaefer M, Plant TD, Obukhov AG, Hofmann T, Gudermann T, Schultz G (2000) Receptor-mediated regulation of the nonselective cation channels TRPC4 and TRPC5. J Biol Chem 275:17517–17526

    CAS  PubMed  Google Scholar 

  102. Plant TD, Schaefer M (2003) TRPC4 and TRPC5: receptor-operated Ca2+-permeable nonselective cation channels. Cell Calcium 33:441–450

    CAS  PubMed  Google Scholar 

  103. Otsuguro K, Tang J, Tang Y, Xiao R, Freichel M, Tsvilovskyy V, Ito S, Flockerzi V, Zhu M, Zholos AV (2008) Isoform-specific inhibition of TRPC4 channel by phosphatidylinositol 4, 5-bisphosphate. J Biol Chem 283:10026–10036

    PubMed Central  CAS  PubMed  Google Scholar 

  104. Blair NT, Kaczmarek JS, Clapham DE (2009) Intracellular calcium strongly potentiates agonist-activated TRPC5 channels. J Gen Physiol 133:525–546

    PubMed Central  CAS  PubMed  Google Scholar 

  105. Lee YM, Kim BJ, Kim HJ, Yang DK, Zhu MH, Lee KP, So I, Kim KW (2003) TRPC5 as a candidate for the nonselective cation channel activated by muscarinic stimulation in murine stomach. Am J Physiol Cell Physiol 284:G6604–G6616

    Google Scholar 

  106. Zhu MH, Chae M, Kim HJ, Lee YM, Kim MJ, Jin NG, Yang DK, So I, Kim KW (2005) Densensitization of canonical transient receptor potential channel 5 by protein kinase C. Am J Physiol Cell Physiol 289:C591–C600

    CAS  PubMed  Google Scholar 

  107. Trebak M, Lemonnier L, Dehaven WI, Wedel BJ, Bird GS, Putney JW Jr. (2008) Complex functions of phosphatidylinositol-4, 5-bisphosphate on regulation of TRPC5 cation channels. Pflugers Arch 457:757–769

    PubMed Central  PubMed  Google Scholar 

  108. Kim BJ, Kim MT, Jeon JH, Kim SJ, So I (2008) Involvement of phosphatidylinositol 4,5-bisphosphate in the desensitization of canonical transient receptor potential 5. Biol Pharm Bull 31:1733–1738

    CAS  PubMed  Google Scholar 

  109. Miehe S, Bieberstein A, Arnould I, Ihdene O, Rütten H, Strübing C (2010) The phospholipid-binding protein SETD1 is a novel regulator of the transient receptor potential channels TRPC4 and TRPC5. J Biol Chem 285:12426–12434

    PubMed Central  CAS  PubMed  Google Scholar 

  110. Beech DJ, Xu SZ, McHugh D, Flemming R (2003) TRPC1 store-operated cationic channel subunit. Cell Calcium 33:433–440

    CAS  PubMed  Google Scholar 

  111. Ma R, Pluznick J, Kudlacek PE, Sansom SC (2001) Protein kinase C activates store-operated Ca2+ channels in human glomerular mesangial cells. J Biol Chem 276: 25759–25765

    CAS  PubMed  Google Scholar 

  112. Ma R, Kudlacek PE, Sansom SC (2002) Protein kinase Calpha participates in activation of store-operated Ca2+ channels in human glomerular mesangial cells. Am J Physiol Cell Physiol 283:C1390–C1398

    CAS  PubMed  Google Scholar 

  113. Li WP, Tsiokas L, Sansom SC, Ma R (2004) Epidermal growth factor activates store-operated Ca2+ channels through an inositol 1,4,5-trisphosphate-independent pathway in human glomerular mesangial cells. J Biol Chem 279:4570–4577

    CAS  PubMed  Google Scholar 

  114. Du J, Sours-Brothers S, Coleman R, Ding M, Graham S, Kong DH, Ma R (2007) Canonical transient receptor potential 1 channel is involved in contractile function of glomerular mesangial cells. J Am Soc Nephrol 18:1437–1445

    CAS  PubMed  Google Scholar 

  115. Wang X, Pluznick JL, Wei P, Padanilam BJ, Sansom SC (2004) TRPC4 forms store-operated Ca2+ channels in mouse mesangial cells. Am J Physiol Cell Physiol 287: C357–C364

    CAS  PubMed  Google Scholar 

  116. Saleh SN, Albert AP, Peppiatt CM, Large WA (2006) Angiotensin II activates two cation conductances with distinct TRPC1 and TRPC6 channel properties in rabbit mesenteric artery myocytes. J Physiol 577:479–495

    PubMed Central  CAS  PubMed  Google Scholar 

  117. Ahmmed GU, Mehta D, Vogel S, Holinstat M, Paria BC, Tiruppathu C, Malik AB (2004) Protein kinase C alpha phosphorylates the TRPC1 channel and regulates store-operated Ca2+ entry in endothelial cells. J Biol Chem 279:20941–20949

    CAS  PubMed  Google Scholar 

  118. Brough GH, Wu S, Cioffi D, Moore TM, Li M, Dean N, Stevens T (2001) Contribution of endogenously expressed Trp1 to a Ca2+-selective, store-operated Ca2+ entry pathway. FASEB J 15:1727–1738

    CAS  PubMed  Google Scholar 

  119. Freichel M, Suh SH, Pfeifer A, Schweig U, Trost C, Weissgerber P, Biel M, Philipp S, Freise D, Droogmans G, Hofmann F, Flockerzi V, Nilius B (2001) Lack of an endothelial store-operated Ca2+ current impairs agonist-dependent vasorelaxation in TRP4–/– mice. Nat Cell Biol 3:121–127

    CAS  PubMed  Google Scholar 

  120. Rey O, Young SH, Papazyan R, Shapiro MS, Rozengurt E (2006) Requirement of the TRPC1 cation channel in the generation of transient Ca2+ oscillations by the calcium-sensing receptor. J Biol Chem 281:38730–38737

    CAS  PubMed  Google Scholar 

  121. Saleh SN, Albert AP, Large WA (2009) Obligatory role for phosphatidylinositol 4,5-bisphosphate in activation of native TRPC1 store-operated channels in vascular myocytes. J Physiol 587:531–540

    PubMed Central  CAS  PubMed  Google Scholar 

  122. Saleh SN, Albert AP, Large WA (2009) Activation of native TRPC1/C5/C6 channels by endothelin-1 is mediated by both PIP3 and PIP2 in rabbit coronary artery myocytes. J Physiol 587:5361–5375

    PubMed Central  CAS  PubMed  Google Scholar 

  123. Liu M, Albert AP, Large WA (2005) Facilitatory effect of Ins(1,4,5)P3 on store-operated Ca2+-permeable cation channels in rabbit portal vein myocytes. J Physiol 566:161–171

    PubMed Central  CAS  PubMed  Google Scholar 

  124. Korzeniowski MK, Popovic MA, Szentpetery Z, Varnai P, Stojilkovic SS, Balla T (2009) Dependence of STIM1/Orai1-mediated calcium entry on plasma membrane phosphoinositides. J Biol Chem 284:21027–21035

    PubMed Central  CAS  PubMed  Google Scholar 

  125. Walsh CM, Chvanov M, Haynes LP, Petersen OH, Tepikin AV, Burgoyne RD (2009) Role of phosphoinositides in STIM1 dynamics and store-operated calcium entry. Biochem J 425:159–168

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgment

Work carried out in the laboratory of the author was funded by The Wellcome Trust and the British Heart Foundation. The author would like to thank Prof WA Large and Dr SN Saleh for many helpful discussions and for reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony P. Albert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Albert, A.P. (2011). Gating Mechanisms of Canonical Transient Receptor Potential Channel Proteins: Role of Phosphoinositols and Diacylglycerol. In: Islam, M. (eds) Transient Receptor Potential Channels. Advances in Experimental Medicine and Biology, vol 704. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0265-3_22

Download citation

Publish with us

Policies and ethics