Skip to main content

The TRPV5 Promoter as a Tool for Generation of Transgenic Mouse Models

  • Chapter
  • First Online:
Transient Receptor Potential Channels

Abstract

The transient receptor potential vanilloid 5 (TRPV5) is a Ca2+ channel, which is expressed in renal late distal convoluted tubules (DCT2s) and connecting tubules (CNTs). These tubules play a major role in hormone controlled renal Ca2+ reabsorption, and thereby in body Ca2+ homeostasis, as well as urinary excretion of other electrolytes, including Na+ and K+. DCT2 and CNT are difficult to distinguish from the surrounding structures and thereby to study by direct functional methods. We developed a transgenic mouse model expressing enhanced green fluorescent protein (EGFP) driven by the TRPV5 promoter to identify these specific tubules. Expression of EGFP in the DCT2 and CNT allows the isolation of pure DCT2 and CNT populations for proteomic and physiological analyses. The TRPV5 promoter is also useful for generating conditional knockout mouse models in a cell-specific manner. TRPV5 promoter driven Cre recombinase expression will be useful for inducing DCT2 and CNT specific gene silencing of various channels, pumps, carriers, and receptors. In this chapter, we describe the strategy for developing transgenic mouse lines involving the TRPV5 promoter, provide a description of extensive validation of these mouse lines, and discuss possible uses and limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reilly RF, Ellison DH (2000) Mammalian distal tubule: physiology, pathophysiology, and molecular anatomy. Physiol Rev 80:277–313

    CAS  PubMed  Google Scholar 

  2. Boron W, Boulpaep EL (2009) Medical Physiology. Saunders Elsevier, Philadelphia, PA

    Google Scholar 

  3. Crayen ML, Thoenes W (1978) Architecture and cell structures in the distal nephron of the rat kidney. Cytobiologie 17:197–211

    CAS  PubMed  Google Scholar 

  4. Madsen KM, Tisher CC (1986) Structural-functional relationships along the distal nephron. Am J Physiol 250:F1–F15

    CAS  Google Scholar 

  5. Hoenderop JG, Bindels R (2005) Epithelial Ca2+ and Mg2+ channels in health and disease. J Am Soc Nephrol 16:15–26

    Article  CAS  PubMed  Google Scholar 

  6. Rubera I, Loffing J, Palmer LG, Frindt G, Fowler-Jaeger N, Sauter D, Carroll T, McMahon A, Hummler E, Rossier BC (2003) Collecting duct-specific gene inactivation of alphaENaC in the mouse kidney does not impair sodium and potassium balance. J Clin Invest 112:554–565

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Loffing J, Korbmacher C (2009) Regulated sodium transport in the renal connecting tubule (CNT) via the epithelial sodium channel (ENaC). Pflugers Arch 458:111–135

    Article  CAS  PubMed  Google Scholar 

  8. Loffing J, Loffing-Cueni D, Valderrabano V, Kläusli L, Hebert SC, Rossier BC, Hoenderop JG, Bindels RJ, Kaissling B (2001) Distribution of transcellular calcium and sodium transport pathways along mouse distal nephron. Am J Physiol Renal Physiol 281:F1021–F1027

    Article  CAS  PubMed  Google Scholar 

  9. Hoenderop JGJ, Müller D, Suzuki M, van Os CH, Bindels RJM (2000) Epithelial calcium channel: gate-keeper of active calcium reabsorption. Curr Opin nephrol Hypertens 9: 335–340

    Article  CAS  PubMed  Google Scholar 

  10. Renkema KY, Nijenhuis T, van der Eerden BC, van der Kemp AW, Weinans H, van Leeuwen JP, Bindels RJ, Hoenderop JG (2005) Hypervitaminosis D mediates compensatory Ca2+ hyperabsorption in TRPV5 knockout mice. J Am Soc Nephrol 16:3188–3195

    Article  CAS  PubMed  Google Scholar 

  11. Vennekens R, Hoenderop JG, Prenen J, Stuiver M, Willems PH, Droogmans G, Nilius B, Bindels RJ (2000) Permeation and gating properties of the novel epithelial Ca(2+) channel. J Biol Chem 275:3963–3969

    Article  CAS  PubMed  Google Scholar 

  12. Peng JB, Chen XZ, Berger UV, Vassilev PM, Tsukaguchi H, Brown EM, Hediger MA (1999) Molecular cloning and characterization of a channel-like transporter mediating intestinal calcium absorption. J Biol Chem 274:22739–22746

    Article  CAS  PubMed  Google Scholar 

  13. Bianco SD, Peng JB, Takanaga H, Suzuki Y, Crescenzi A, Kos CH, Zhuang L, Freeman MR, Gouveia CH, Wu J, Luo H, Mauro T, Brown EM, Hediger MA (2007) Marked disturbance of calcium homeostasis in mice with targeted disruption of the Trpv6 calcium channel gene. J Bone Miner Res 22:274–285

    Article  CAS  PubMed  Google Scholar 

  14. Suzuki Y, Kovacs CS, Takanaga H, Peng JB, Landowski CP, Hediger MA (2008) Calcium channel TRPV6 is involved in murine maternal-fetal calcium transport. J Bone Miner Res 23:1249–1256

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Nilius B, Prenen J, Vennekens R, Hoenderop JG, Bindels RJ, Droogmans G (2001) Pharmacological modulation of monovalent cation currents through the epithelial Ca2+ channel ECaC1. Br J Pharmacol 134:453–462

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Voets T, Janssens A, Droogmans G, Nilius B (2004) Outer pore architecture of a Ca2+-selective TRP channel. J Biol Chem 279:15223–15230

    Article  CAS  PubMed  Google Scholar 

  17. Woudenberg-Vrenken TE, Bindels RJ, Hoenderop JG (2009) The role of transient receptor potential channels in kidney disease. Nat Rev Nephrol 5:441–449

    Article  CAS  PubMed  Google Scholar 

  18. Hoenderop JG, Bindels RJ (2008) Calciotropic and magnesiotropic TRP channels. Physiology (Bethesda) 23:32–40

    Article  CAS  Google Scholar 

  19. Hoenderop JG, Nilius B, Bindels RJ (2002) Molecular mechanism of active Ca2+ reabsorption in the distal nephron. Annu Rev Physiol 64:529–549

    Article  CAS  PubMed  Google Scholar 

  20. Costantini F, Lacy E (1981) Introduction of a rabbit beta-globin gene into the mouse germ line. Nature 294:92–94

    Article  CAS  PubMed  Google Scholar 

  21. Brinster RL, Chen HY, Trumbauer M, Senear AW, Warren R, Palmiter RD (1981) Somatic expression of herpes thymidine kinase in mice following injection of a fusion gene into eggs. Cell 27:223–231

    Article  CAS  PubMed  Google Scholar 

  22. Gordon JW, Ruddle FH (1981) Integration and stable germ line transmission of genes injected into mouse pronuclei. Science 214:1244–1246

    Article  CAS  PubMed  Google Scholar 

  23. Rubera I, Hummler E, Beermann F (2009) Transgenic mice and their impact on kidney research. Pflugers Arch 458:211–222

    Article  CAS  PubMed  Google Scholar 

  24. Palmiter RD, Brinster RL (1986) Germ-line transformation of mice. Annu Rev Genet 20: 465–499

    Article  CAS  PubMed  Google Scholar 

  25. Hofmeister MV, Fenton RA, Praetorius J (2009) Fluorescence isolation of mouse late distal convoluted tubules and connecting tubules: effects of vasopressin and vitamin D3 on Ca2+ signaling. Am J Physiol Renal Physiol 296:F194–F203

    Article  CAS  PubMed  Google Scholar 

  26. Miller RL, Zhang P, Chen T, Rohrwasser A, Nelson RD (2006) Automated method for the isolation of collecting ducts. Am J Physiol Renal Physiol 291:F236–F245

    Article  CAS  PubMed  Google Scholar 

  27. Sauer B, Henderson N (1988) Site-specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage P1. Proc Natl Acad Sci USA 85:5166–5170

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Inger Merete S. Paulsen, Christian V. Westberg, Zhila Nikrozi, and Helle Høyer for expert technical assistance. Support for this study was obtained from the Danish Medical Research Council, Karen Elise Jensens Fond, Lundbeckfonden, and Novo Nordisk Fonden. M. V. Hofmeister is supported by the Faculty of Health Sciences, University of Aarhus. The Water and Salt Research Centre at the University of Aarhus is established and supported by the Danish National Research Foundation (Danmarks Grundforskningsfond).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeppe Praetorius .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Hofmeister, M.V., Füchtbauer, EM., Fenton, R.A., Praetorius, J. (2011). The TRPV5 Promoter as a Tool for Generation of Transgenic Mouse Models. In: Islam, M. (eds) Transient Receptor Potential Channels. Advances in Experimental Medicine and Biology, vol 704. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0265-3_15

Download citation

Publish with us

Policies and ethics