Skip to main content

The effect of subfilter-scale physics on regularization models

  • Conference paper
Quality and Reliability of Large-Eddy Simulations II

Part of the book series: ERCOFTAC Series ((ERCO,volume 16))

Abstract

The subfilter-scale (SFS) physics of regularization models are investigated to understand the regularizations’ performance as SFS models. The strong suppression of spectrally local SFS interactions and the conservation of small-scale circulation in the Lagrangian-averaged Navier-Stokes α−model (LANS−α) is found to lead to the formation of rigid bodies. These contaminate the superfilter-scale energy spectrum with a scaling that approaches k +1 as the SFS spectra is resolved. The Clark−α and Leray−α models, truncations of LANS−α, do not conserve small-scale circulation and do not develop rigid bodies. LANS−α, however, is closest to Navier-Stokes in intermittency properties. For magnetohydrodynamics (MHD), the presence of the Lorentz force as a source (or sink) for circulation and as a facilitator of both spectrally nonlocal large to small scale interactions as well as local SFS interactions prevents the formation of rigid bodies in Lagrangian-averaged MHD (LAMHD−α). We find LAMHD−α performs well as a predictor of superfilter-scale energy spectra and of intermittent current sheets at high Reynolds numbers. We expect it may prove to be a generally applicable MHD-LES.

The National Center for Atmospheric Research is sponsored by the National Science Foundation

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Alexakis, P. D. Mininni, and A. Pouquet. Shell-to-shell energy transfer in MHD. I. Steady state turbulence. Phys. Rev. E, 72(4):046301–+, 2005.

    MathSciNet  ADS  Google Scholar 

  2. C. Cao, D. D. Holm, and E. S. Titi. On the Clark α model of turbulence: global regularity and long-time dynamics. Journal of Turbulence, 6:N20, 2005.

    Article  MathSciNet  ADS  Google Scholar 

  3. S. Chen, C. Foias, D. D. Holm, E. Olson, E. S. Titi, and S. Wynne. Camassa-Holm Equations as a Closure Model for Turbulent Channel and Pipe Flow. Physical Review Letters, 81:5338–5341, 1998.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. J.-P. Chollet and M. Lesieur. Parameterization of Small Scales of Three-Dimensional Isotropic Turbulence Utilizing Spectral Closures. Journal of Atmospheric Sciences, 38:2747–2757, 1981.

    Article  ADS  Google Scholar 

  5. C. Foias, D. D. Holm, and E. S. Titi. The Navier-Stokes-alpha model of fluid turbulence. Physica D Nonlinear Phenomena, 152-153:505–519, 2001.

    Article  MathSciNet  ADS  Google Scholar 

  6. D. Galloway and U. Frisch. Dynamo action in a family of flows with chaotic streamlines. Geophysical and Astrophysical Fluid Dynamics, 36:53–83, 1986.

    Article  MathSciNet  ADS  Google Scholar 

  7. B. J. Geurts and D. D. Holm. Regularization modeling for large-eddy simulation. Physics of Fluids, 15:L13–L16, 2003.

    Article  MathSciNet  ADS  Google Scholar 

  8. Bernard J. Geurts and Darryl D. Holm. Leray and LANS-α modelling of turbulent mixing. Journal of Turbulence, 7(10):1–33, 2006.

    MathSciNet  ADS  Google Scholar 

  9. P. Goldreich and S. Sridhar. Toward a theory of interstellar turbulence. 2: Strong alfvenic turbulence. ApJ, 438:763–775, 1995.

    Article  ADS  Google Scholar 

  10. D. O. Gómez, P. D. Mininni, and P. Dmitruk. MHD simulations and astrophysical applications. Advances in Space Research, 35:899–907, 2005.

    Article  ADS  Google Scholar 

  11. D. O. Gómez, P. D. Mininni, and P. Dmitruk. Parallel Simulations in Turbulent MHD. Physica Scripta Volume T, 116:123–127, 2005.

    Article  ADS  Google Scholar 

  12. J. Pietarila Graham, D. Holm, P. Mininni, and A. Pouquet. Highly turbulent solutions of the Lagrangian-averaged Navier-Stokes alpha model and their large-eddy-simulation potential. Phys. Rev. E, 76:056310–+, 2007.

    MathSciNet  ADS  Google Scholar 

  13. J. Pietarila Graham, D. D. Holm, P. Mininni, and A. Pouquet. Inertial range scaling, Kármán-Howarth theorem, and intermittency for forced and decaying Lagrangian averaged MHD equations in 2D. Physics of Fluids, 18:045106, 2006.

    Article  MathSciNet  ADS  Google Scholar 

  14. J. Pietarila Graham, D. D. Holm, P. D. Mininni, and A. Pouquet. Three regularization models of the Navier-Stokes equations. Physics of Fluids, 20(3):035107–+, 2008.

    Article  ADS  Google Scholar 

  15. J. Pietarila Graham, P. D. Mininni, and A. Pouquet. Lagrangian-averaged model for magnetohydrodynamic turbulence and the absence of bottlenecks. Phys. Rev. E, 80(1):016313–+, 2009.

    ADS  Google Scholar 

  16. J.-L. Guermond. On the use of the notion of suitable weak solutions in CFD. International Journal for Numerical Methods in Fluids, 57:1153–1170, 2008.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. D. D. Holm. Lagrangian averages, averaged Lagrangians, and the mean effects of fluctuations in fluid dynamics. Chaos, 12:518–530, 2002.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. D. D. Holm, J. E. Marsden, and T. S. Ratiu. The Euler-Poincaré Equations and Semidirect Products with Applications to Continuum Theories. Adv. in Math., 137:1–81, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  19. P. S. Iroshnikov. Turbulence of a Conducting Fluid in a Strong Magnetic Field. Soviet Astronomy, 7:566–+, 1964.

    MathSciNet  ADS  Google Scholar 

  20. T.-Y. Kim, M. Cassiani, J. D. Albertson, J. E. Dolbow, E. Fried, and M. E. Gurtin. Impact of the inherent separation of scales in the Navier-Stokes-α β equations. Phys. Rev. E, 79(4):045307–+, 2009.

    MathSciNet  ADS  Google Scholar 

  21. B. Knaepen and P. Moin. Large-eddy simulation of conductive flows at low magnetic Reynolds number. Physics of Fluids, 16:1255–+, 2004.

    Article  MathSciNet  ADS  Google Scholar 

  22. R. H. Kraichnan. Inertial-range spectrum of hydromagnetic turbulence. Physics of Fluids, 8:1385–1387, 1965.

    Article  MathSciNet  ADS  Google Scholar 

  23. E. Lee, M. E. Brachet, A. Pouquet, P. D. Mininni, and D. Rosenberg. On the lack of universality in decaying MHD turbulence. arXiv:0906.2506, 2009.

    Google Scholar 

  24. J. Mason, F. Cattaneo, and S. Boldyrev. Numerical measurements of the spectrum in magnetohydrodynamic turbulence. Phys. Rev. E, 77(3):036403–+, 2008.

    ADS  Google Scholar 

  25. P. D. Mininni, D. C. Montgomery, and A. Pouquet. Numerical solutions of the three-dimensional MHD α model. Phys. Rev. E, 71(4):046304–+, 2005.

    ADS  Google Scholar 

  26. P. D. Mininni, D. C. Montgomery, and A. G. Pouquet. A numerical study of the alpha model for two-dimensional magnetohydrodynamic turbulent flows. Physics of Fluids, 17(3):035112–+, 2005.

    Article  MathSciNet  ADS  Google Scholar 

  27. K. Mohseni, B. Kosović, S. Shkoller, and J. E. Marsden. Numerical simulations of the Lagrangian averaged Navier-Stokes equations for homogeneous isotropic turbulence. Physics of Fluids, 15:524–544, 2003.

    Article  MathSciNet  ADS  Google Scholar 

  28. W.-C. Müller and D. Carati. Dynamic gradient-diffusion subgrid models for incompressible MHD turbulence. Physics of Plasmas, 9:824–834, 2002.

    Article  ADS  Google Scholar 

  29. Y. Ponty, H. Politano, and J.-F. Pinton. Simulation of Induction at Low Magnetic Prandtl Number. Physical Review Letters, 92(14):144503–+, 2004.

    Article  ADS  Google Scholar 

  30. G. I. Taylor and A. E. Green. Mechanism of the Production of Small Eddies from Large Ones. Proceedings of the Royal Society of London, A158:499, 1937.

    ADS  Google Scholar 

  31. M. L. Theobald, P. A. Fox, and S. Sofia. A subgrid-scale resistivity for magnetohydrodynamics. Physics of Plasmas, 1:3016–3032, 1994.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this paper

Cite this paper

Graham, J.P., Holm, D., Mininni, P., Pouquet, A. (2011). The effect of subfilter-scale physics on regularization models. In: Salvetti, M., Geurts, B., Meyers, J., Sagaut, P. (eds) Quality and Reliability of Large-Eddy Simulations II. ERCOFTAC Series, vol 16. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0231-8_37

Download citation

Publish with us

Policies and ethics