Skip to main content

From suitable weak solutions to entropy viscosity

  • Conference paper

Part of the book series: ERCOFTAC Series ((ERCO,volume 16))

Abstract

This paper focuses on the notion of suitable weak solutions for the three-dimensional incompressible Navier–Stokes equations and discusses the relevance of this notion to Computational Fluid Dynamics. The purpose of the paper is twofold (i) to recall basic mathematical properties of the three-dimensional incompressible Navier-Stokes equations and to show how they relate to LES (ii) to introduce an entropy viscosity technique based on the notion of suitable weak solution and to illustrate numerically this concept.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Bardos, A.Y. le Roux, and J.-C. Nédélec. First order quasilinear equations with boundary conditions. Comm. Partial Differential Equations, 4(9):1017–1034, 1979.

    Article  MATH  MathSciNet  Google Scholar 

  2. S. Bertoluzza. The discrete commutator property of approximation spaces. C. R. Acad. Sci. Paris, Sér. I, 329(12):1097–1102, 1999.

    MATH  MathSciNet  ADS  Google Scholar 

  3. L. Caffarelli, R. Kohn, and L. Nirenberg. Partial regularity of suitable weak solutions of the Navier-Stokes equations. Comm. Pure Appl. Math., 35(6):771–831, 1982.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. A.F. Emery. An evaluation of several differencing methods for inviscid fluid flow problems. J. Computational Phys., 2:306–331, 1968.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. S. Gottlieb, C.-W. Shu, and E. Tadmor. Strong stability-preserving high-order time discretization methods. SIAM Rev., 43(1):89–112 (electronic), 2001.

    Article  MATH  MathSciNet  Google Scholar 

  6. J.-L. Guermond, and S. Prudhomme. On the construction of suitable solutions to the navier–stokes equations and questions regarding the definition of large eddy simulation. Physica D, 207:64–78, 2005.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. J.-L. Guermond. Finite-element-based Faedo-Galerkin weak solutions to the Navier-Stokes equations in the three-dimensional torus are suitable. J. Math. Pures Appl. (9), 85(3):451–464, 2006.

    MATH  MathSciNet  Google Scholar 

  8. J.-L. Guermond. Faedo-Galerkin weak solutions of the Navier–Stokes equations with Dirichlet boundary conditions are suitable. J. Math. Pures Appl., 88:87–106, 2007.

    MATH  MathSciNet  Google Scholar 

  9. J.-L. Guermond. On the use of the notion of suitable weak solutions in CFD. Int. J. Numer. Methods Fluids, 57:1153–1170, 2008.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. J.-L. Guermond and R. Pasquetti. Entropy-based nonlinear viscosity for fourier approximations of conservation laws. C. R. Math. Acad. Sci. Paris, 346:801–806, 2008.

    MATH  MathSciNet  Google Scholar 

  11. J.-L. Guermond and R. Pasquetti. Entropy viscosity method for high-order approximations of conservation laws. In E. Ronquist, editor, ICOSAHOM09, Lecture Notes in computational Science and Engineering, Berlin, 2010. Springer-Verlag.

    Google Scholar 

  12. J. Hoffman and C. Johnson. Computational turbulent incompressible flow, volume 4 of Applied Mathematics: Body and Soul. Springer, Berlin, 2007.

    Book  MATH  Google Scholar 

  13. E. Hopf. Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Math. Nachr., 4:213–231, 1951.

    MATH  MathSciNet  Google Scholar 

  14. C. Johnson and A. Szepessy. On the convergence of a finite element method for a nonlinear hyperbolic conservation law. Math. Comp., 49(180):427–444, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  15. C. Johnson, A. Szepessy, and P. Hansbo. On the convergence of shock-capturing streamline diffusion finite element methods for hyperbolic conservation laws. Math. Comp., 54(189):107–129, 1990.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. S. N. Kružkov. First order quasilinear equations with several independent variables. Mat. Sb. (N.S.), 81 (123):228–255, 1970.

    MathSciNet  Google Scholar 

  17. A. Kurganov, G. Petrova, and B. Popov. Adaptive semidiscrete central-upwind schemes for nonconvex hyperbolic conservation laws. SIAM J. Sci. Comput., 29(6):2381–2401 (electronic), 2007.

    Article  MATH  MathSciNet  Google Scholar 

  18. J. Leray. Essai sur le mouvement d’un fluide visqueux emplissant l’espace. Acta Math., 63:193–248, 1934.

    Article  MATH  MathSciNet  Google Scholar 

  19. R. J. LeVeque. Finite volume methods for hyperbolic problems. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge, 2002.

    Book  MATH  Google Scholar 

  20. F. Lin. A new proof of the Caffarelli-Kohn-Nirenberg theorem. Comm. Pure Appl. Math., 51(3):241–257, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  21. R. Liska and B. Wendroff. Comparison of several difference schemes on 1D and 2D test problems for the Euler equations. SIAM J. Sci. Comput., 25(3):995–1017 (electronic), 2003.

    Article  MATH  MathSciNet  Google Scholar 

  22. V. Scheffer. Hausdorff measure and the Navier-Stokes equations. Comm. Math. Phys., 55(2):97–112, 1977.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. P. Woodward and P. Colella. The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys., 54(1):115–173, 1984.

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Luc Guermond .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this paper

Cite this paper

Guermond, JL., Pasquetti, R., Popov, B. (2011). From suitable weak solutions to entropy viscosity. In: Salvetti, M., Geurts, B., Meyers, J., Sagaut, P. (eds) Quality and Reliability of Large-Eddy Simulations II. ERCOFTAC Series, vol 16. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0231-8_34

Download citation

Publish with us

Policies and ethics