Skip to main content

Influence of Reynolds number and grid resolution on large-eddy simulations of self-similar jets based on relaxation filtering

  • Conference paper
Quality and Reliability of Large-Eddy Simulations II

Part of the book series: ERCOFTAC Series ((ERCO,volume 16))

Abstract

Large-eddy simulations are performed using low-dissipation numerical schemes combined with a relaxation filtering as subgrid dissipation to investigate the influence of the Reynolds number and the grid resolution on self-similar turbulent circular jets. Three jets with the same initial parameters except for the diameters yielding Reynolds numbers of 1800, 3600 and 11000 are first considered. Then two additional jets at Reynolds number 3600 are calculated using coarser grids in the turbulent flow regions. Energy dissipation and filtering activity are examined in the different simulations, and mean and turbulent properties of the jets are compared.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bogey C, Bailly C (2006) Phys Fluids 18(6): 065101

    Article  ADS  Google Scholar 

  2. Bogey C, Bailly C (2009) J Fluid Mech 627: 129–160

    Article  MATH  ADS  Google Scholar 

  3. Panchapakesan NR, Lumley JL (1993) J Fluid Mech 246: 197–223

    Article  ADS  Google Scholar 

  4. Stolz S, Adams NA, Kleiser L (2001) Phys. Fluids 13(4):997–1015

    Article  ADS  Google Scholar 

  5. Mathew J, Lechner R, Foysi H, Sesterhenn J, Friedrich R (2003) Phys. Fluids 15(8):2279–2289

    Article  ADS  Google Scholar 

  6. Rizzetta DP, Visbal MR, Blaisdell GA (2003) Int. J. Numer. Meth. Fluids 42:665–693

    Article  MATH  Google Scholar 

  7. Schlatter P, Stolz S, Kleiser L (2006) Int. J. Heat Fluid Flow 27:549–558

    Google Scholar 

  8. Bogey C, Bailly C (2006) Int J Heat Fluid Flow 27(4):603–610

    Article  Google Scholar 

  9. Lemieux GP, Oosthuizen PH (1985) AIAA J 23: 1845–1847

    Article  ADS  Google Scholar 

  10. Namer I, Ötügen MV (1988) Exp Fluids 6: 387–399

    Article  Google Scholar 

  11. Pitts WM (1991) Exp Fluids (11): 135–141

    Google Scholar 

  12. Kwon SJ, Seo IW (2005) Exp Fluids 38: 801–812

    Article  Google Scholar 

  13. Deo RC, Mi J, Nathan GJ (2008) Phys Fluids (20): 075108

    Article  ADS  Google Scholar 

  14. Fellouah H, Ball CG, Pollard A (2009) Int J Heat Mass Transfer 52:3943–3954

    Article  Google Scholar 

  15. Vreman B, Geurts B, Kuerten H (1995) Appl Sci Res 54:191–203

    Article  MATH  Google Scholar 

  16. Vreman B, Geurts B, Kuerten H (1997) J Fluid Mech. 339:357–390

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. Bogey C, Bailly C (2004) J Comput Phys 194(1): 194–214

    Article  MATH  ADS  Google Scholar 

  18. Geurts BJ, Fröhlich J (2002) Phys Fluids 14(6):41–44

    Article  ADS  Google Scholar 

  19. Wygnanski I, Fiedler H (1969) J Fluid Mech 38(3): 577–612

    Article  ADS  Google Scholar 

  20. Bogey C, Bailly C (2006) Computers & Fluids 35(10): 1344–1358

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Bogey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this paper

Cite this paper

Bogey, C., Bailly, C. (2011). Influence of Reynolds number and grid resolution on large-eddy simulations of self-similar jets based on relaxation filtering. In: Salvetti, M., Geurts, B., Meyers, J., Sagaut, P. (eds) Quality and Reliability of Large-Eddy Simulations II. ERCOFTAC Series, vol 16. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0231-8_29

Download citation

Publish with us

Policies and ethics