Skip to main content

Numerical and physical instabilities in massively parallel LES of reacting flows

  • Conference paper
  • 1508 Accesses

Part of the book series: ERCOFTAC Series ((ERCO,volume 16))

Abstract

LES of reacting flows is rapidly becoming mature and providing levels of precision which can not be reached with any RANS (Reynolds Averaged) technique. In addition to the multiple subgrid scale models required for such LES and to the questions raised by the required numerical accurcay of LES solvers, various issues related the reliability, mesh independence and repetitivity of LES must still be addressed, especially when LES is used on massively parallel machines. This talk discusses some of these issues: (1) the existence of non physical waves (known as ‘wiggles’ by most LES practitioners) in LES, (2) the effects of mesh size on LES of reacting flows, (3) the growth of rounding errors in LES on massively parallel machines and more generally (4) the ability to qualify a LES code as ‘bug free’ and ‘accurate’. Examples range from academic cases (minimum non-reacting turbulent channel) to applied configurations (a sector of an helicopter combustion chamber).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. S. Abarbanel and A. E. Chertock. Strict stability of high-order compact implicit finite-difference schemes: the role of boundary conditions for hyperbolic PDEs, I. J. Comput. Phys., 160:42–66, 2000.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. G. Boudier, L. Y. M. Gicquel, T. Poinsot, D. Bissières, and C. Bérat. Effect of mesh resolution on large eddy simulation of reacting flows in complex geometry combustors. Combust. Flame, 155(1-2):196–214, 2008.

    Article  Google Scholar 

  3. F. Chaitin-Chatelin and V. Frayssé. Lectures on Finite Precision Computations. SIAM, Philadelphia, 1996.

    MATH  Google Scholar 

  4. P. Clavin. Dynamics of combustion fronts in premixed gases: from flames to detonations. Proc. Combust. Inst., 28:569–586, 2000.

    Article  Google Scholar 

  5. O. Colin and M. Rudgyard. Development of high-order taylor-galerkin schemes for unsteady calculations. J. Comput. Phys., 162(2):338–371, 2000.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. E. Cuthill and J. McKee. Reducing the bandwidth of sparse symmetric matrices. In Proceedings of the 24th National Conference of the ACM, pages 157–172, 1969.

    Google Scholar 

  7. P. G. Drazin and W. H. Reid. Hydrodynamic stability. Cambridge University Press, London, 1981.

    MATH  Google Scholar 

  8. M. Freitag and J. Janicka. Investigation of a strongly swirled premixed flame using LES. Proc. Combust. Inst., 31:1477–1485, 2007.

    Article  Google Scholar 

  9. S. Ghosal and P. Moin. The basic equations for the large eddy simulation of turbulent flows in complex geometry. J. Comput. Phys., 118:24 – 37, 1995.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. A. Giauque, L. Selle, T. Poinsot, H. Buechner, P. Kaufmann, and W. Krebs. System identification of a large-scale swirled partially premixed combustor using LES and measurements. J. Turb., 6(21):1–20, 2005.

    ADS  Google Scholar 

  11. G. Hanrot, V. Lefèvre, D. Stehlé, and P. Zimmermann. Worst cases for a periodic function with large arguments. In Peter Kornerup and Jean-Michel Muller, editors, Proceedings of the 18th IEEE Symposium on Computer Arithmetic, pages 133–140, Los Alamitos, CA, 2007. IEEE Computer Society Press.

    Chapter  Google Scholar 

  12. C. Hirsch. Numerical Computation of Internal and External Flows. John Wiley, New York, 1988.

    MATH  Google Scholar 

  13. C. M. Ho and P. Huerre. Perturbed free shear layers. J. Fluid Mech., 16:365, 1984.

    Article  ADS  Google Scholar 

  14. M. Klein. An attempt to assess the quality of large eddy simulations in the context of implicit filtering. Flow, Turb. and Combustion, 75(1-4):131–147, 2005.

    Article  MATH  Google Scholar 

  15. S.K. Lele. Compact finite difference schemes with spectral like resolution. J. Comput. Phys., 103:16–42, 1992.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. W.-H. Liu and A. H. Sherman. Comparative analysis of the Cuthill-McKee and the reverse Cuthill-McKee ordering algorithms for sparse matrices. SIAM Journal of Numerical Analysis, 13(2):198–213, 1976.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. K. Mahesh, G. Constantinescu, and P. Moin. A numerical method for large-eddy simulation in complex geometries. J. Comput. Phys., 197(1):215–240, 2004.

    Article  MATH  ADS  Google Scholar 

  18. F. Di Mare, W. P. Jones, and K. Menzies. Large eddy simulation of a model gas turbine combustor. Combust. Flame, 137:278–295, 2004.

    Article  Google Scholar 

  19. C. Martin, L. Benoit, Y. Sommerer, F. Nicoud, and T. Poinsot. LES and acoustic analysis of combustion instability in a staged turbulent swirled combustor. AIAA Journal, 44(4):741–750, 2006.

    Article  ADS  Google Scholar 

  20. J. Meyers, B. J. Geurts, and M. Baelmans. Database analysis of errors in large-eddy simulation. Phys. Fluids, 15(9):2740–2755, September 2003.

    Article  ADS  Google Scholar 

  21. V. Moureau, G. Lartigue, Y. Sommerer, C. Angelberger, O. Colin, and T. Poinsot. Numerical methods for unsteady compressible multi-component reacting flows on fixed and moving grids. J. Comput. Phys., 202(2):710–736, 2005.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. T. Poinsot, T. Echekki, and M. G. Mungal. A study of the laminar flame tip and implications for premixed turbulent combustion. Combust. Sci. Tech., 81(1-3):45–73, 1992.

    Article  Google Scholar 

  23. T. Poinsot and D. Veynante. Theoretical and Numerical Combustion. R.T. Edwards, 2nd edition, 2005.

    Google Scholar 

  24. S. B. Pope. Turbulent flows. Cambridge University Press, 2000.

    MATH  Google Scholar 

  25. S. B. Pope. Ten questions concerning the large-eddy simulation of turbulent flows. New Journal of Physics, 6:35, 2004.

    Article  ADS  Google Scholar 

  26. C. Prière, L. Y. M. Gicquel, P. Gajan, A. Strzelecki, T. Poinsot, and C. Bérat. Experimental and numerical studies of dilution systems for low emission combustors. Am. Inst. Aeronaut. Astronaut. J., 43(8):1753–1766, 2005.

    Google Scholar 

  27. L. Rayleigh. The explanation of certain acoustic phenomena. Nature, July 18:319–321, 1878.

    Article  ADS  Google Scholar 

  28. S. Richard, O. Colin, O. Vermorel, A. Benkenida, C. Angelberger, and D. Veynante. Towards large eddy simulation of combustion in spark ignition engines. Proc. Combust. Inst., 31(3059-3066), 2007.

    Google Scholar 

  29. P. Sagaut. Large Eddy Simulation for incompressible flows. Scientific computation series. Springer-Verlag, 2000.

    Google Scholar 

  30. P. Schmitt, T. J. Poinsot, B. Schuermans, and K. Geigle. Large-eddy simulation and experimental study of heat transfer, nitric oxide emissions and combustion instability in a swirled turbulent high pressure burner. J. Fluid Mech., 570:17–46, 2007.

    Article  MATH  ADS  Google Scholar 

  31. T. Schønfeld and M. Rudgyard. Steady and unsteady flows simulations using the hybrid flow solver AVBP. AIAA Journal, 37(11):1378–1385, 1999.

    Article  ADS  Google Scholar 

  32. L. Selle, L. Benoit, T. Poinsot, F. Nicoud, and W. Krebs. Joint use of compressible large-eddy simulation and Helmoltz solvers for the analysis of rotating modes in an industrial swirled burner. Combust. Flame, 145(1-2):194–205, 2006.

    Article  Google Scholar 

  33. T. K. Sengupta. Fundamentals of Computational Fluid Dynamics. Universities Press, Hyderabad (India), 2004.

    Google Scholar 

  34. T. K. Sengupta, G. Ganerwal, and A. Dipankar. High accuracy compact schemes and Gibbs’ phenomenon. J. Sci. Comput., 21(3):253–268, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  35. J.-M. Senoner, M. García, S. Mendez, G. Staffelbach, O. Vermorel, and T. Poinsot. Growth of rounding errors and repetitivity of large eddy simulations growth of rounding errors and repetitivity of large eddy simulations growth of rounding errors and repetitivity of large eddy simulations. AIAA Journal, 46(7):1773–1781, 2008.

    Article  ADS  Google Scholar 

  36. Y. Sommerer, D. Galley, T. Poinsot, S. Ducruix, F. Lacas, and D. Veynante. Large eddy simulation and experimental study of flashback and blow-off in a lean partially premixed swirled burner. J. Turb., 5, 2004.

    Google Scholar 

  37. J. S. Stoer and R. Bulirsch. An Introduction to Numerical Analysis. Springer, Berlin, 1980.

    Google Scholar 

  38. V. E. Taylor and B. Nour-Omid. A study of the factorization fill-in for a parallel implementation of the finite element method. Int. J. Numer. Meth. Eng., 37:3809–3823, 1994.

    Article  MATH  Google Scholar 

  39. H. Tennekes and J. L. Lumley. A first course in turbulence. M.I.T. Press, Cambridge, 1972.

    Google Scholar 

  40. R. Vichnevetsky and J. B. Bowles. Fourier analysis of numerical approximations of hyperbolic equations. SIAM Studies in Applied Mechanics, Philadelphia, 1982.

    Google Scholar 

  41. A. W. Vreman, B. J. Geurts, and J. G. M. Kuerten. A priori tests of large eddy simulation of the compressible plane mixing layer. J. Eng. Math., 29:299–327, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  42. B. Vreman, B. Geurts, and H. Kuerten. Comparison of numerical schemes in large-eddy simulation of the temporal mixing layer. Int. J. Numer. Meth. Fluids, 22:297–311, 1996.

    Article  MATH  Google Scholar 

  43. F. A. Williams. Combustion Theory. Benjamin Cummings, Menlo Park, CA, 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Poinsot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this paper

Cite this paper

Poinsot, T. (2011). Numerical and physical instabilities in massively parallel LES of reacting flows. In: Salvetti, M., Geurts, B., Meyers, J., Sagaut, P. (eds) Quality and Reliability of Large-Eddy Simulations II. ERCOFTAC Series, vol 16. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0231-8_2

Download citation

Publish with us

Policies and ethics