Skip to main content

Relevance of approximate deconvolution for one-way coupled motion of inertial particles in LES of turbulent channel flow

  • Conference paper
Quality and Reliability of Large-Eddy Simulations II

Part of the book series: ERCOFTAC Series ((ERCO,volume 16))

Abstract

The Euler-Lagrange approach, based on Direct Numerical Simulation (DNS) and Large-Eddy Simulation (LES) for the fluid, is applied to particle-laden turbulent flow in a channel. Explicit subgrid modeling of the turbulent stresses is adopted, while the particle motion includes small turbulent scales based on approximate deconvolution of the LES field. Results for turbulent flow in a channel at Re τ =150 are discussed, focusing on one-way coupled point-particle statistics at three Stokes numbers. DNS provides a point of reference for assessing LES with different sub-filter eddy-viscosity models: Smagorinsky, Van Driest-Smagorinsky and the dynamic model are studied. Clustering and segregation of particles near the wall, due to turbophoresis, is strongly related to the quality of the LES velocity field and the approximate reconstruction of the smaller resolved scales. It is shown that deconvolution up to second order allows to better describe the particle statistics near a solid wall; deconvolution at higher order yields rather marginal additional improvements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Portela L.M., Oliemans R.V.A. (2003) Int J Numer Meth Fluids 43:1045–1065

    Article  MATH  MathSciNet  Google Scholar 

  2. Geurts B.J. (1997) Phys Fluids 9:3585–3587

    Article  ADS  Google Scholar 

  3. Stolz S., Adams N.A. (1999) Phys Fluids 11:1699–1701

    Article  MATH  ADS  Google Scholar 

  4. Kuerten J.G.M. (2006) Phys Fluids 18:025108-1–13

    Article  ADS  Google Scholar 

  5. Kuerten J.G.M., Vreman A.W. (2005) Phys Fluids 17:011701-1–4

    Article  ADS  Google Scholar 

  6. Shotorban B., Mashayek F. (2005) Phys Fluids 17:081701-1–4

    Article  ADS  Google Scholar 

  7. Armenio V., Piomelli U., Fiorotto V. (1999) Phys Fluids 11:3030–3042

    Article  MATH  ADS  Google Scholar 

  8. Marchioli C., Salvetti M.V., Soldati A. (2008) Phys Fluids 20:040603-1–11

    Article  ADS  Google Scholar 

  9. Smagorinsky J. (1963) Mon Weather Rev 91:99–164

    Article  ADS  Google Scholar 

  10. Moin P., Kim J. (1982) J Fluid Mech 118:341–377

    Article  MATH  ADS  Google Scholar 

  11. Germano M., Piomelli U., Moin P., Cabot W.M. (1991) Phys Fluids A 3:1760–1765

    Article  MATH  ADS  Google Scholar 

  12. Elghobashi S. (2004) An Updated Classification Map of Particle-Laden Turbulent Flows. In: Balachandar S., Prosperetti A. (eds) IUTAM Symposium on Computational Approaches to Multiphase Flow.

    Google Scholar 

  13. Maxey M.R., Riley J.K. (1983) Phys Fluids A 26:883–889

    Article  MATH  ADS  Google Scholar 

  14. Kulick J.D., Fessler J.R., Eaton J.K. (1994) J Fluid Mech 277:109–121

    Article  ADS  Google Scholar 

  15. Fessler J., Eaton J.K. (1994) Int J Multiphase Flows 20:169–209

    Article  MATH  Google Scholar 

  16. Chung J., Koch D.L., Rani S.L. (2005) J Fluid Mech 536:219–227

    Article  MathSciNet  ADS  Google Scholar 

  17. Eggels J.G.M. (1994) Direct and large-eddy simulations of turbulent flow in a cylindrical pipe geometry. PhD thesis, Laboratory for Aero & Hydrodynamics, TU Delft

    Google Scholar 

  18. Geurts B.J., Vreman A.W. (2006) Int J Heat and Fluid Flow 27:945–954

    Article  Google Scholar 

  19. Vreman A.W., Geurts B.J., Kuerten J.G.M. (1997) J Fluid Mech 339:357–390

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Jaszczur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this paper

Cite this paper

Jaszczur, M., Geurts, B.J., Kuerten, J.G.M. (2011). Relevance of approximate deconvolution for one-way coupled motion of inertial particles in LES of turbulent channel flow. In: Salvetti, M., Geurts, B., Meyers, J., Sagaut, P. (eds) Quality and Reliability of Large-Eddy Simulations II. ERCOFTAC Series, vol 16. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0231-8_17

Download citation

Publish with us

Policies and ethics