Skip to main content

Part of the book series: Theoretical and Mathematical Physics ((TMP))

  • 1869 Accesses

Abstract

This Chapter introduces the notion of an effective action for a quantum field theory. The effective action is defined as a functional whose variations over classical backgrounds yield averages of operators (such as currents, stress-energy tensors and etc.). The arguments which lead to this definition are straightforward for non-interacting quantum fields. The effective action can then be defined by the Ray-Singer formula provided that one uses Laplace-type operators. This implies a ‘Euclidean’ formulation of the theory. To meet these requirements the analysis, after a short overview of statistical mechanics, is applied to finite-temperature field theories. The aim of the present Chapter is basically to show how the spectral geometry methods can be used to reproduce a number of known QFT results, usually derived with the help of Feynman diagrams. Among them are one-loop effective (Coleman-Weinberg) potential and beta functions in gauge theories. The material also includes the following topics: relation between the Euclidean effective action and partition functions, complex geometries, renormalization theory, properties of the effective action of gauge fields, Faddeev-Popov ghosts, and the asymptotic freedom in quantum chromodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allen, B.: Phase transitions in de Sitter space. Nucl. Phys. B 226, 228 (1983)

    Article  ADS  Google Scholar 

  2. Avramidi, I.G.: Heat Kernel and Quantum Gravity. Springer, Berlin (2000)

    MATH  Google Scholar 

  3. Birrell, N.D., Davies, P.C.: Quantum Fields in Curved Space. Cambridge University Press, Cambridge (1982)

    MATH  Google Scholar 

  4. Buchbinder, I.L., Odintsov, S.D., Shapiro, I.L.: Effective Action in Quantum Gravity. IOP Publishing, Bristol (1992)

    Google Scholar 

  5. Dowker, J.S., Kennedy, G.: Finite temperature and boundary effects in static space-times. J. Phys. A 11, 895 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  6. Eguchi, T., Gilkey, P.B., Hanson, A.J.: Gravitation, gauge theories and differential geometry. Phys. Rep. 66, 213 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  7. Elizalde, E.: Ten Physical Applications of Spectral Zeta Functions. Springer, Berlin (1995)

    MATH  Google Scholar 

  8. Elizalde, E., Odintsov, S., Romeo, A., Bytsenko, A.A., Zerbini, S.: Zeta Regularization Technique with Applications. World Scientific, Singapore (1994)

    Book  Google Scholar 

  9. Esposito, G.: Dirac Operators and Spectral Geometry. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  10. Esposito, G.: Quantum Gravity in Four-Dimensions. Nova Science, New York (2001)

    Google Scholar 

  11. Esposito, G., Kamenshchik, A.Y., Pollifrone, G.: Euclidean Quantum Gravity on Manifolds with Boundary. Kluwer Academic, Dordrecht (1997)

    MATH  Google Scholar 

  12. Faddeev, L.D., Popov, V.N.: Feynman diagrams for the Yang-Mills field. Phys. Lett. B 25, 29–30 (1967)

    Article  ADS  Google Scholar 

  13. Faddeev, L.D., Slavnov, A.A.: Gauge fields. Introduction to quantum theory. Front. Phys. 50, 1–232 (1980)

    MathSciNet  Google Scholar 

  14. Feynman, R.P., Hibbs, A.R.: Quantum Mechanics and Path Integrals. McGraw-Hill, New York (1965)

    MATH  Google Scholar 

  15. Fulling, S.A., Ruijsenaars, S.N.M.: Temperature, periodicity and horizons. Phys. Rep. 152, 135 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  16. Gibbons, G.W.: In: General Relativity: An Einstein Centenary Survey, 639 pp. Cambridge University Press, Cambridge (1979)

    Google Scholar 

  17. Gibbons, G.W., Hawking, S.W.: Action integrals and partition functions in quantum gravity. Phys. Rev. D 15, 2752–2756 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  18. Gibbons, G.W., Hawking, S.W.: Cosmological event horizons, thermodynamics, and particle creation. Phys. Rev. D 15, 2738 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  19. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products. Academic Press, New York (1994)

    MATH  Google Scholar 

  20. Gross, D.J., Wilczek, F.: Ultraviolet behavior of non-abelian gauge theories. Phys. Rev. Lett. 30, 1343–1346 (1973)

    Article  ADS  Google Scholar 

  21. Hartle, J.B., Hawking, S.W.: Path integral derivation of black hole radiance. Phys. Rev. D 13, 2188 (1976)

    Article  ADS  Google Scholar 

  22. Huang, K.: Quarks, Leptons and Gauge Fields. World Scientific, Singapore (1982)

    Google Scholar 

  23. Itzykson, C., Zuber, J.-B.: Quantum Field Theory. McGraw-Hill, New York (1980)

    Google Scholar 

  24. Kapusta, J.I., Gale, C.: Finite-temperature Field Theory: Principles and Applications. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  25. Landsman, N.P., van Weert, C.G.: Real and imaginary time field theory at finite temperature and density. Phys. Rep. 145, 141 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  26. Martin, P.C., Schwinger, J.S.: Theory of many particle systems. I. Phys. Rev. 115, 1342–1373 (1959)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. Matsubara, T.: A new approach to quantum statistical mechanics. Prog. Theor. Phys. 14, 351–378 (1955)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. Moss, I.G.: Quantum Theory, Black Holes and Inflation. Wiley, New York (1996)

    MATH  Google Scholar 

  29. Mukhanov, V.F., Winitzki, S.: Introduction to Quantum Effects in Gravity. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  30. Peskin, M.E., Schroeder, D.V.: An Introduction to Quantum Field Theory. Addison-Wesley, Reading (1995)

    Google Scholar 

  31. Politzer, H.D.: Reliable perturbative results for strong interactions? Phys. Rev. Lett. 30, 1346–1349 (1973)

    Article  ADS  Google Scholar 

  32. Vasil’ev, A.N.: The Field Theoretic Renormalization Group in Critical Behavior Theory and Stochastic Dynamics. Chapman & Hall/CRC, Boca Raton (2004)

    Book  MATH  Google Scholar 

  33. Weinberg, S.: The Quantum Theory of Fields. Vol. 1: Foundations. Cambridge University Press, Cambridge (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitri Vassilevich .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Fursaev, D., Vassilevich, D. (2011). Effective Action. In: Operators, Geometry and Quanta. Theoretical and Mathematical Physics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0205-9_7

Download citation

Publish with us

Policies and ethics