Skip to main content

Inductively Coupled Plasma Torches

  • Chapter
  • First Online:
  • 1859 Accesses

Part of the book series: Scientific Computation ((SCIENTCOMP))

Abstract

We investigate in this chapter another type of application using eddy currents. An Inductively Coupled Plasma torch (commonly referred to as ICP) is a technical device used to analyze a given sample (gas, solid or liquid prepared as an aerosol) by injecting it in a plasma (generally made of argon) (see Fig. 10.1). The sample atoms are thus ionized thanks to the high temperature of the plasma. In such devices, energy is supplied by Joule heating to maintain a plasma source to a given temperature. This source is useful to dissolve, vaporize and ionize gas and a sample to analyze. An ICP generally includes a sample introduction system (generally a nebulizer), an ICP torch, a radio frequency generator and a spectrometer. More detailed description and applications of ICP torches can be found for instance in [1, 25, 133].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abeele, D.V., Degrez, G.: Efficient computational model for inductive plasma flows. AIAA J. 38(2), 234–242 (2000)

    Google Scholar 

  2. Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions. U.S. Government Printing Office, Washington (1964)

    MATH  Google Scholar 

  3. Adams, R.: Sobolev Spaces. Academic, New York (1975)

    MATH  Google Scholar 

  4. Ainsworth, M., McLean, W., Tran, T.: The conditioning of boundary element equations on locally refined meshes and preconditioning by diagonal scaling. SIAM J. Numer. Anal. 36, 1901–1932 (1999)

    MathSciNet  MATH  Google Scholar 

  5. Albanese, R., Rubinacci, G.: Finite element methods for the solution of 2-D eddy current problems. Adv. Imaging Electron Phys. 102, 1–86 (1998)

    Google Scholar 

  6. Albanese, R., Rubinacci, G., Tamburrino, A., Ventre, S., Villone, F.: A fast 3-D eddy current integral formulation. COMPEL 20(2), 317–331 (2001)

    MATH  Google Scholar 

  7. Amiez, G., Gremaud, P.A.: On a numerical approach to stefan like problems. Numer. Math. 59, 71–89 (1991)

    MathSciNet  MATH  Google Scholar 

  8. Amirat, Y., Touzani, R.: Self–inductance coefficient for toroidal thin conductors. Nonlinear Anal. B 131, 233–240 (2001)

    MathSciNet  Google Scholar 

  9. Amirat, Y., Touzani, R.: Asymptotic behavior of the inductance coefficient for thin conductors. Math. Models Methods Appl. Sci. 12(2), 273–289 (2002)

    MathSciNet  MATH  Google Scholar 

  10. Amirat, Y., Touzani, R.: A two-dimensional eddy current model using thin inductors. Asymptot. Anal. 58(3), 171–188 (2008)

    MathSciNet  MATH  Google Scholar 

  11. Amirat, Y., Touzani, R.: A singular perturbation problem in eddy current models (2013, submitted)

    Google Scholar 

  12. Ammari, H., Nédélec, J.C.: Propagation d’ondes électromagnétiques à basses fréquences. J. Math. Pures Appl. 77, 839–849 (1998)

    MathSciNet  MATH  Google Scholar 

  13. Ammari, H., Buffa, A., Nédélec, J.C.: A justification of eddy currents model for the Maxwell equations. SIAM J. Appl. Math. 60(5), 1805–1823 (2000)

    MathSciNet  MATH  Google Scholar 

  14. Amrouche, C., Bernardi, C., Dauge, M., Girault, V.: Vector potentials in three–dimensional non-smooth domains. Math. Methods Appl. Sci. 21, 823–864 (1998)

    MathSciNet  MATH  Google Scholar 

  15. Arnold, D.N., Wendland, W.L.: On the asymptotic convergence of collocation methods. Math. Comput. 41(164), 349–381 (1983)

    MathSciNet  MATH  Google Scholar 

  16. Batchelor, G.K.: An Introduction to Fluid Dynamics. Cambridge University, Cambridge (1967)

    MATH  Google Scholar 

  17. Bay, F., Labbé, V., Favennec, Y., Chenot, J.L.: A numerical model for induction heating processes coupling electromagnetism and thermomechanics. Int. J. Numer. Method Eng. 58(6), 839–867 (2003)

    MATH  Google Scholar 

  18. Belgacem, F.B., Fournié, M., Gmati, N., Jelassi, F.: On the Schwarz algorithm for the elliptic exterior boundary value problems. Model. Math. Anal. Numer. 39(4), 693–714 (2005)

    MATH  Google Scholar 

  19. Bénilan, P., Boccardo, L., Gallouët, T., Gariepy, R., Pierre, M., Vazquez, J.: An L 1–theory of existence and uniqueness of solutions of nonlinear elliptic equations. Annali della Scuola Normale Superiore di Pisa – Classe di Scienze, Ser. 4 22(2), 241–273 (1995)

    Google Scholar 

  20. Bermúdez, A., Rodríguez, R., Salgado, P.: A finite element method with Lagrange multipliers for low-frequency harmonic Maxwell equations. SIAM J. Numer. Anal. 40(5), 1823–1849 (2002)

    MathSciNet  MATH  Google Scholar 

  21. Bermúdez, A., Muñiz, M.C., Salgado, P.: Asymptotic approximation and numerical simulation of electromagnetic casting. Metall. Trans. B 34(1), 83–91 (2003)

    Google Scholar 

  22. Bermúdez, A., Gómez, D., Muñiz, M.C., Salgado, P., Vázquez, R.: Numerical simulation of a thermo-electromagneto-hydrodynamic problem in an induction heating furnace. Appl. Numer. Math. 59(1), 2082–2104 (2009)

    MathSciNet  MATH  Google Scholar 

  23. Bernardi, C., Dauge, M., Maday, Y.: Spectral Methods for Axisymmetric Domains. Series in Applied Mathematics. Gauthier-Villars, Paris (1999)

    MATH  Google Scholar 

  24. Bernardi, D., Colombo, V., Ghedini, E., Mentrelli, A.: Three-dimensional modeling of inductively coupled plasma torches. Pure Appl. Chem. 77(2), 359–372 (2005)

    Google Scholar 

  25. Bernardi, D., Colombo, V., Ghedini, E., Mentrelli, A., Trombetti, T.: 3-D numerical analysis of powder injection in inductively coupled plasma torches. IEEE Trans. Plasma Sci. 33(2), 424–425 (2005)

    Google Scholar 

  26. Besson, O., Bourgeois, J., Chevalier, P.A., Rappaz, J., Touzani, R.: Numerical modelling of electromagnetic casting processes. J. Comput. Phys. 92(2), 482–507 (1991)

    MathSciNet  MATH  Google Scholar 

  27. Biro, O.: Edge element formulations of eddy current problems. Comput. Methods Appl. Mech. Eng. 169, 391–405 (1999)

    MathSciNet  MATH  Google Scholar 

  28. Biro, O., Preis, K.: An edge finite element eddy current formulation using a reduced magnetic and a current vector potential. IEEE Trans. Magn. 36(5), 3128–3130 (2000)

    Google Scholar 

  29. Boccardo, L., Gallouët, T.: Nonlinear elliptic and parabolic equations involving measure data. J. Funct. Anal. 87(1), 149–169 (1989)

    MathSciNet  MATH  Google Scholar 

  30. Bodart, O., Boureau, A.V., Touzani, R.: Numerical investigation of optimal control of induction heating processes. Appl. Math. Model. 25, 697–712 (2001)

    MATH  Google Scholar 

  31. Bonnans, J.F., Gilbert, J., Lemaréchal, C., Sagastizabal, C.: Numerical Optimization. Springer, New York (2006)

    MATH  Google Scholar 

  32. Bossavit, A.: On the numerical analysis of eddy current problems. Comput. Methods Appl. Mech. Eng. 27, 303–318 (1981)

    MathSciNet  MATH  Google Scholar 

  33. Bossavit, A.: Two dual formulations of the 3-D eddy currents problem. COMPEL 4(2), 103–116 (1985)

    MathSciNet  Google Scholar 

  34. Bossavit, A.: Computational Electromagnetism. Associated Press (1998)

    Google Scholar 

  35. Bossavit, A., Rodrigues, J.F.: On the electromagnetic induction heating problem in bounded domains. Adv. Math. Sci. Appl. 4(1), 79–92 (1994)

    MathSciNet  MATH  Google Scholar 

  36. Bossavit, A., Vérité, J.C.: The TRIFOU code: solving the 3-D eddy–current problem by using h as a state variable. IEEE Trans. Magn. (MAG–19) 6, 2465–2470 (1983)

    Google Scholar 

  37. Bouchon, F., Clain, S., Touzani, R.: Numerical solution of the free boundary Bernoulli problem using a level set formulation. Comput. Methods Appl. Mech. Eng. 194(36–38), 3934–3948 (2005)

    MathSciNet  MATH  Google Scholar 

  38. Braess, D.: Finite Elements, Theory, Fast Solvers, and Applications in Solid Mechanics. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  39. Brancher, J.P., Sero-Guilaume, O.: Sur l’équilibre des liquides magnétiques. Application à la magnétostatique. J. Mec. Theor. Appl. 2(2), 265–283 (1983)

    MATH  Google Scholar 

  40. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer, New York (2002)

    MATH  Google Scholar 

  41. Brezis, H.: Analyse Fonctionnelle. Masson, Paris (1983)

    MATH  Google Scholar 

  42. Brooks, A.N., Hughes, T.J.R.: Streamline upwind/petrov-galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 32, 199–259 (1982)

    MathSciNet  MATH  Google Scholar 

  43. Buffa, A., Ciarlet, P. Jr.: On traces for functional spaces related to maxwell’s equations. Part I: an integration by parts formula in Lipschitz polyhedra. Math. Methods Appl. Sci. 24, 9–30 (2001)

    MathSciNet  MATH  Google Scholar 

  44. Buffa, A., Ciarlet, P. Jr.: On traces for functional spaces related to Maxwell’s equations. Part II: Hodge decompositions on the boundary of Lipschitz polyhedra and applications. Math. Methods Appl. Sci 24, 31–48 (2001)

    MathSciNet  MATH  Google Scholar 

  45. Casado-Díaz, J., Rebollo, T.C., Girault, V., Mármol, M.G., Murat, F.: Finite elements approximation of second order linear elliptic equations in divergence form with right-hand side in L 1. Numer. Math. 105(3), 337–374 (2006)

    Google Scholar 

  46. Casas, E.: Pontryagin’s principle for state-constraint boundary control problems of seminlinear parabolic equations. SIAM J. Control Optim. 35, 1297–1327 (1997)

    MathSciNet  MATH  Google Scholar 

  47. Chaboudez, C., Clain, S., Glardon, R., Rappaz, J., Swierkosz, M., Touzani, R.: Numerical modelling in induction heating of long workpieces. IEEE Trans. Magn. 30(6), 5028–5037 (1994)

    Google Scholar 

  48. Chaboudez, C., Clain, S., Mari, D., Glardon, R., Swierkosz, M., Rappaz, J.: Numerical modelling in induction heating for axisymmetric geometries. IEEE Trans. Magn. 33(1), 739–745 (1997)

    Google Scholar 

  49. Chadebec, O., Colomb, J.L., Janet, F.: A review of magnetostatic moment method. IEEE Trans. Magn. 42(4), 515–520 (2006)

    Google Scholar 

  50. Ciarlet, P.G.: Finite element methods. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, vol. I, pp. 209–485. North-Holland, Amsterdam (1991)

    Google Scholar 

  51. Ciarlet, P.J., Sonnendrücker, E.: A decomposition of the electromagnetic field – application to the Darwin model. Math. Models Methods Appl. Sci. 7(8), 1085–1120 (1997)

    MathSciNet  MATH  Google Scholar 

  52. Clain, S.: Analyse mathématique et numérique d’un modèle de chauffage par induction. Ph.D. thesis, École Polytechnique Fédérale de Lausanne (1994)

    Google Scholar 

  53. Clain, S., Touzani, R.: Solution of a two–dimensional stationary induction heating problem without boundedness of the coefficients. Model. Math. Anal. Numer. 31(7), 845–870 (1997)

    MathSciNet  MATH  Google Scholar 

  54. Clain, S., Touzani, R.: A two–dimensional stationary induction heating problems. Math. Methods Appl. Sci. 20, 759–766 (1997)

    MathSciNet  MATH  Google Scholar 

  55. Clain, S., Rappaz, J., Swierkosz, M., Touzani, R.: Numerical modelling of induction heating for 2-D geometries. Math. Models Methods Appl. Sci. 3(6), 805–822 (1993)

    MathSciNet  MATH  Google Scholar 

  56. Clain, S., Rochette, D., Touzani, R.: A multislope MUSCL method on unstructured meshes applied to compressible euler equations for swirling flows. J. Comput. Phys. 229, 4884–4906 (2010)

    MathSciNet  MATH  Google Scholar 

  57. Clain, S., Touzani, R., Silva, M.L.D., Vacher, D., André, P.: A contribution on the numerical simulation of ICP torches. In: Fifth European Conference on Computational Fluid Dynamics, ECCOMAS CFD, Lisbon (2010)

    Google Scholar 

  58. Costabel, M.: Symmetric methods for the coupling of finite elements and boundary elements. In: Brebbia, C., Wendland, W., Kuhn, G. (eds.) Boundary Elements IX, pp. 411–420. Springer, Berlin (1987)

    Google Scholar 

  59. Coulaud, O., Henrot, A.: Numerical approximation of free boundary problem arising in electromagnetic shaping. Tech. Rep., INRIA (1992)

    Google Scholar 

  60. Crouzeix, M.: Variational approach of a magnetic shaping problem. Eur. J. Mech., B/Fluids 10(5), 527–536 (1991)

    Google Scholar 

  61. Dacorogna, B.: Direct Methods in the Calculus of Variations. Applied Mathematical Sciences. Springer, Berlin (1989)

    MATH  Google Scholar 

  62. Dautray, R., Lions, J.L.: Mathematical Analysis and Numerical Methods for Science and Technology. Springer, Berlin (1990)

    Google Scholar 

  63. Descloux, J.: Stability of the solutions of the bidimensional magnetic shaping problem in absence of surface tension. Eur. J. Mech. B/Fluids 10(5), 513–526 (1991)

    MathSciNet  MATH  Google Scholar 

  64. Descloux, J.: A stability result for the magnetic shaping problem. Z. Angew. Math. Phys. 45, 544–555 (1994)

    MathSciNet  Google Scholar 

  65. Descloux, J., Flück, M., Rappaz, J.: A problem of magnetostatics related to thin plates. Model. Math. Anal. Numer. 32, 859–876 (1998)

    MATH  Google Scholar 

  66. Descloux, J., Flück, M., Romerio, M.: A modelling of the stability of aluminium electrolytic cells. In: Nonlinear Partial Differential Equations and Their Applications, Collège de France Seminar, vol. XIII (Paris, 1994/1996). Volume 391 of Pitman Research Notes in Mathematics Series, pp. 117–133. Longman, Harlow (1998)

    Google Scholar 

  67. Descloux, J., Flück, M., Rappaz, J.: Modelling and mathematical results arising from ferromagnetic problems. Sci. China Math. 55(5), 1053–1067 (2012)

    MathSciNet  MATH  Google Scholar 

  68. Djaoua, M.: Équations intégrales pour un problème singulier dans le plan. Ph.D. thesis, École Polytechnique (1977)

    Google Scholar 

  69. Dreyfuss, P.: Analyse numérique d’une méthode intégrale sans singularité – application à l’électromagnétisme. Ph.D. thesis, École Polytechnique Fédérale de Lausanne (1999)

    Google Scholar 

  70. Dreyfuss, P., Rappaz, J.: Numerical analysis of a non singular boundary integral method. Part I: the circular case. Math. Methods Appl. Sci. 24, 847–863 (2001)

    MathSciNet  MATH  Google Scholar 

  71. Dreyfuss, P., Rappaz, J.: Numerical analysis of a non singular boundary integral method. Part II: the general case. Math. Methods Appl. Sci. 25, 557–570 (2002)

    MathSciNet  MATH  Google Scholar 

  72. Egan, L.R., Furlani, E.P.: A computer simulation of an induction heating system. IEEE Trans. Magn. 27, 4343–4354 (1991)

    Google Scholar 

  73. Favennec, Y., Labbé, V., Bay, F.: Induction heating processes optimization: a general optimal control approach. J. Comput. Phys. 187, 68–94 (2003)

    MATH  Google Scholar 

  74. Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman Lectures on Physics. The Commemorative Ed. Addison Wesley, Redwood City (1989)

    Google Scholar 

  75. Flotron, S.: Simulations numériques de phénomènes MHD–thermiques avec interface libre dans l’électrolyse de l’aluminium. Ph.D. thesis, École Polytechnique Fédérale de Lausanne (2013)

    Google Scholar 

  76. Flück, M., Rumpf, M.: Bernoulli’s free-boundary problem, qualitative theory and numerical approximation. J. Reine Angew. Math. 486, 165–204 (1997)

    MathSciNet  Google Scholar 

  77. Flück, M., Hofer, T., Picasso, M., Rappaz, J., Steiner, G.: Scientific computing for aluminium production. Int. J. Numer. Anal. Model. 1(1), 1–20 (2008)

    Google Scholar 

  78. Flück, M., Janka, A., Laurent, C., Picasso, M., Rappaz, J., Steiner, G.: Some mathematical and numerical aspects in aluminium production. J. Sci. Comput. 1(1), 1–20 (2009)

    Google Scholar 

  79. Flück, M., Rappaz, J., Safa, Y.: Numerical simulation of thermal problems coupled with magnetohydrodynamic effects in aluminum cells. Appl. Math. Model. 33(3), 1479–1492 (2009)

    MathSciNet  MATH  Google Scholar 

  80. Flück, M., Hofer, T., Janka, A., Rappaz, J.: Numerical methods for ferromagnetic plates. Appl. Numer. Partial Differ. Equ. Comput. Methods Appl. Sci. 15, 169–182 (2010)

    Google Scholar 

  81. Franca, L.P., Muller, R.L., Hughes, T.J.R.: Convergence analyses of Galerkin least-squares methods for symmetric advective-diffusiv forms of the Stokes and incompressible Navier-stokes equations. Comput. Methods Appl. Mech. Eng. 105(2), 285–298 (1993)

    MATH  Google Scholar 

  82. Friedman, M.J.: Mathematical study of the nonlinear singular integral magnetic field equation. I. SIAM J. Appl. Math. 39(1), 14–20 (1980)

    MATH  Google Scholar 

  83. Friedman, M.J.: Mathematical study of the nonlinear singular integral magnetic field equation. II. SIAM J. Appl. Math. 18(4), 644–653 (1981)

    MATH  Google Scholar 

  84. Friedman, M.J.: Mathematical study of the nonlinear singular integral magnetic field equation. III. SIAM J. Appl. Math. 12(4), 536–540 (1981)

    MATH  Google Scholar 

  85. Gagnoud, A., Etay, J., Garnier: Le problème de lévitation en frontière libre électromagnétique. J. Mec. Theor. Appl. 5(6), 911–925 (1986)

    MATH  Google Scholar 

  86. Gallouët, T., Herbin, R.: Existence of a solution to a coupled elliptic system. Appl. Math. Lett. 7(2), 49–55 (1994)

    MathSciNet  MATH  Google Scholar 

  87. Gatica, G.: An alternative variational formulation for the Johnson & Nédélec’s coupling procedure. Rev. Math. Appl. 16, 17–41 (1995)

    MathSciNet  MATH  Google Scholar 

  88. Gauthier-Béchonnet, S.: Résolution et mise en œuvre d’un modèle tridimensionnal des courants de foucault. Ph.D. thesis, Université Blaise Pascal, Clermont-Ferrand (1998)

    Google Scholar 

  89. Gerbeau, J.F., Le Bris, C., Bercovier, M.: Existence of solution for a density-dependent magnetohydrodynamic equation. Adv. Differ. Equ. 2(3), 427–452 (1997)

    MATH  Google Scholar 

  90. Gerbeau, J.F., Le Bris, C., Bercovier, M.: Spurious velocities in the steady flow of an incompressible fluid subjected to external forces. Int. J. Numer. Method Fluids 25, 679–695 (1997)

    MATH  Google Scholar 

  91. Gerbeau, J.F., Le Bris, C., Le Lièvre, T.: Mathematical Methods for the Magnetohydrodynamics of Liquid Metals. Oxford University Press, Oxford (2006)

    MATH  Google Scholar 

  92. Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (1970)

    Google Scholar 

  93. Girault, V., Raviart, P.A.: Finite Element Approximation of the Navier-Stokes Equations. Springer, Berlin (1985)

    Google Scholar 

  94. Gleize, A., Gonzales, J., Freton, P.: Thermal plasma modelling. J. Phys. D Appl. Phys. 38, R153–R183 (2005)

    Google Scholar 

  95. Haddar, H., Joly, P.: Effective boundary conditions for thin ferromagnetic layers: the one dimensional model. SIAM J. Appl. Math. 6(4), 1386–1417 (2001)

    MathSciNet  Google Scholar 

  96. Henneron, T.: Contribution à la prise en compte des grandeurs globales dans les problèmes d’électromagnétisme résolus avec la méthode des éléments finis. Ph.D. thesis, Université Lille I (2004)

    Google Scholar 

  97. Henrot, A., Pierre, M.: Un problème inverse en formage des métaux liquides. Model. Math. Anal. Numer. 23(1), 155–177 (1989)

    MathSciNet  MATH  Google Scholar 

  98. Henrot, A., Pierre, M.: Variation et optimisation de forme: une analyse géométrique. Springer, Berlin (2005)

    Google Scholar 

  99. Hernández, R.V.: Contributions to the mathematical study of some problems in magnetohydrodynamics and induction heating. Ph.D. thesis, Universidade de Santiago de Compostela (2008)

    Google Scholar 

  100. Hiptmair, R.: Symmetric coupling for eddy current problems. SIAM J. Numer. Anal. 40(1), 41–65 (2002)

    MathSciNet  MATH  Google Scholar 

  101. Hiptmair, R., Sterz, O.: Current and voltage excitations for the eddy current model. Int. J. Numer. Model. 18, 1–21 (2005)

    MATH  Google Scholar 

  102. Hofer, T.: Numerical simulation and optimization of the alumina distribution in an aluminium electrolysis pot. Ph.D. thesis, École Polytechnique Fédérale de Lausanne (2011)

    Google Scholar 

  103. Hsiao, G.: On boundary integral equations of the first kind. J. Comput. Math. 7(2), 121–131 (1989)

    MathSciNet  MATH  Google Scholar 

  104. Hsiao, G.: Boundary element methods – an overview. Appl. Numer. Math. 56, 1356–1369 (2006)

    MathSciNet  MATH  Google Scholar 

  105. Hsiao, G., Wendland, W.: Boundary element methods: foundation and error analysis. In: Encyclopedia of Computational Mechanics, vol. 1, chap. 12, pp. 339–373. Wiley (2005)

  106. Hughes, T.J.R.: The Finite Element Method, Linear Static and Dynamic Finite Element Analysis. Dover, Mineola (2000)

    MATH  Google Scholar 

  107. Jackson, J.: Classical Electrodynamics. Wiley, London (1965)

    Google Scholar 

  108. Johnson, C., Nédélec, J.C.: On the coupling of boundary integral and finite element methods. Math. Comput. 35, 1063–1079 (1980)

    MATH  Google Scholar 

  109. Joly, P., Vacus, O.: Mathematical and numerical studies of nonlinear ferromagnetic material. Model. Math. Anal. Numer. 33(3), 593–626 (1999)

    MathSciNet  MATH  Google Scholar 

  110. Kanayama, H., Tagami, D., Saito, M., Kikuchi, F.: A numerical method for 3-D eddy current problems. Jpn. J. Ind. Appl. Math. 18(2), 603–612 (2001)

    MathSciNet  MATH  Google Scholar 

  111. Kim, D.H., Hahn, S.Y., Park, I.H., Cha, G.: Computation of three–dimensional electromagnetic field including moving media by indirect boundary integral equation method. IEEE Trans. Magn. 35(3), 1932–1938 (1999)

    Google Scholar 

  112. Klein, O., Philip, P.: Correct voltage distribution for axisymmetric sinusoidal modelling of induction heating with prescribing current, voltage, or power. IEEE Trans. Magn. 38(3), 1519–1523 (2002)

    Google Scholar 

  113. Kuhn, M., Steinbach, O.: Symmetric coupling of finite and boundary elements for exterior magnetic field problems. Math. Methods Appl. Sci. 25, 357–371 (2002)

    MathSciNet  MATH  Google Scholar 

  114. Kuster, C., Gremaud, P., Touzani, R.: Fast numerical methods for Bernoulli free boundary problems. SIAM J. Sci. Comput. 29(2), 622–634 (2007)

    MathSciNet  MATH  Google Scholar 

  115. Labridis, D., Dokopoulos, P.: Calculation of eddy current losses in nonlinear ferromagnetic materials. IEEE Trans. Magn. 25, 2665–2669 (1989)

    Google Scholar 

  116. Landau, L., Lifshitz, E.: Electrodynamics of Continuous Media. Pergamon, London (1960)

    MATH  Google Scholar 

  117. Landau, L., Lifshitz, E.: Fluid Mechanics. Pergamon, London (1960)

    Google Scholar 

  118. Leray, J., Schauder, J.: Topologie et équations fonctionnelles. Ann. Sci. Ecole Norm. Sup. 51, 45–78 (1934)

    MathSciNet  Google Scholar 

  119. Leroux, M.N.: Résolution numérique du problème du potentiel dans le plan par une méthode variationnelle d’éléments finis. Ph.D. thesis, Université de Rennes (1974)

    Google Scholar 

  120. Leroux, M.N.: Méthode d’éléments finis pour la résolution numérique de problèmes extérieurs en dimension 2. R.A.I.R.O. Analyse Numérique 11(1), 27–60 (1977)

    Google Scholar 

  121. Li, B.Q.: The fluid flow aspects of electromagnetic levitation processes. Int. J. Eng. Sci. 32(1), 45–67 (1989)

    Google Scholar 

  122. Li, H.: Finite element analysis for the axisymmetric Laplace operator on polygonal domains. J. Comput. Appl. Math. 235, 5155–5176 (2011)

    MathSciNet  MATH  Google Scholar 

  123. Li, B.Q., Evans, J.W.: Computation of shapes of electromagnetically supported menisci in electromagnetic casters. Part I: calculations in two dimensions. IEEE Trans. Magn. 25(6), 4443–4448 (1989)

    Google Scholar 

  124. Lions, J.L., Magenes, E.: Problèmes aux limites non homogènes et applications, Tome I. Dunod, Paris (1968)

    MATH  Google Scholar 

  125. Massé, P., Morel, B., Breville, T.: A finite element prediction correction scheme for magneto-thermal coupled problem during Curie transition. IEEE Trans. Magn. 25, 181–183 (1989)

    Google Scholar 

  126. Masserey, A.: Optimisation et simulation numérique du chauffage par induction pour le procédé de thixoformage. Ph.D. thesis, École Polytechnique Fédérale de Lausanne (2002)

    Google Scholar 

  127. Masserey, A., Rappaz, J., Rozsnyo, R., Touzani, R.: Optimal control of an induction heating process for thixoforming. IEEE Trans. Magn. 40(3), 1657–1663 (2004)

    Google Scholar 

  128. Masserey, A., Rappaz, J., Rozsnyo, R., Touzani, R.: Power formulation for the optimal control of an industrial induction heating process for thixoforming. Int. J. Appl. Electromagn. Mech. 19, 51–56 (2004)

    Google Scholar 

  129. Meir, A.: Thermally coupled, stationary, incompressible MHD flow; existence, uniqueness, and finite element approximation. Numer. Methods PDE 11, 311–337 (1995)

    MathSciNet  MATH  Google Scholar 

  130. Meir, A., Schmidt, P.G.: Variational methods for stationary MHD flow under natural interface conditions. Nonlinear Anal. Theory Methods Appl. 24(4), 659–689 (1996)

    MathSciNet  Google Scholar 

  131. Monk, P.: Finite Element Methods for Maxwell’s Equations. Oxford University Press, Oxford (2003)

    MATH  Google Scholar 

  132. Monk, P., Vacus, O.: Error estimates for a numerical scheme for ferromagnetic problems. SIAM J. Numer. Anal. 36(3), 696–718 (1999)

    MathSciNet  Google Scholar 

  133. Montaser, A., Golightly, D.W. (eds.): Inductively Coupled Plasmas in Analytical Atomic Spectrometry. VCH Publishers, Inc., New York (1992)

    Google Scholar 

  134. Natarajan, T., El-Kaddah, N.: A methodology for two-dimensional finite element analysis of electromagnetically driven flow in induction stirring systems. IEEE Trans. Magn. 35(3), 1773–1776 (1999)

    Google Scholar 

  135. Nédélec, J.C.: Notions sur les équations intégrales de la physique. Centre de Mathématiques Appliquées, École Polytechnique, Palaiseau (1977)

    Google Scholar 

  136. Nédélec, J.C.: Mixed finite elements in 3. Numer. Math. 35(3), 315–341 (1980)

    MathSciNet  MATH  Google Scholar 

  137. Nédélec, J.C.: A new family of mixed finite elements in 3. Numer. Math. 50, 57–81 (1986)

    MathSciNet  MATH  Google Scholar 

  138. Nédélec, J.C.: Acoustic and Electromagnetic Equations. Integral Representations for Harmonic Problems. Springer, New York (2001)

    MATH  Google Scholar 

  139. Neff, H.: Introductory Electromagnetics. Wiley, New York (1991)

    Google Scholar 

  140. Parietti, C.: Modélisation mathématique et analyse numérique d’un problème de chauffage électromagnétique. Ph.D. thesis, École Polytechnique Fédérale de Lausanne (1998)

    Google Scholar 

  141. Parietti, C., Rappaz, J.: A quasi–static two–dimensional induction heating problem. Part I: modelling and analysis. Math. Models Methods Appl. Sci. 8(6), 1003–1021 (1998)

    MathSciNet  MATH  Google Scholar 

  142. Parietti, C., Rappaz, J.: A quasi–static two–dimensional induction heating problem. Part II: numerical analysis. Math. Models Methods Appl. Sci. 9(9), 1333–1350 (1999)

    MathSciNet  MATH  Google Scholar 

  143. Pierre, M., Roche, J.R.: Computation of free surfaces in the electromagnetic shaping of liquid metals by optimization algorithms. Eur. J. Mech. B/Fluids 10(5), 489–500 (1991)

    MathSciNet  MATH  Google Scholar 

  144. Pierre, M., Roche, J.R.: Numerical simulation of electromagnetic shaping of liquid metals. Tech. Rep., INRIA (1992)

    Google Scholar 

  145. Rapetti, F., Bouillaut, F., Santandrea, L., Buffa, A., Maday, Y., Razek, A.: Calculation of eddy currents with edge elements on non-matching grids in moving structures. IEEE Trans. Magn. 10(5), 482–507 (1991)

    Google Scholar 

  146. Rappaz, J., Swierkosz, M.: Mathematical modeling and numerical simulation of induction heating process. Appl. Math. Comput. Sci. 6(2), 207–221 (1996)

    MathSciNet  MATH  Google Scholar 

  147. Rappaz, J., Swierkosz, M.: Boundary-element method yields external vector potentials in complex industrial applications. Comput. Phys. 11(2), 145–150 (1997)

    Google Scholar 

  148. Rappaz, J., Touzani, R.: Modelling of a two–dimensional magnetohydrodynamic problem. Eur. J. Mech. B/Fluids 10(5), 482–507 (1991)

    MathSciNet  Google Scholar 

  149. Rappaz, J., Touzani, R.: On a two–dimensional Magnetohydrodynamic problem, I: modelling and analysis. Model. Math. Anal. Numer. 26(2), 347–364 (1992)

    MathSciNet  MATH  Google Scholar 

  150. Rappaz, J., Touzani, R.: On a two–dimensional Magnetohydrodynamic problem, II: numerical analysis. Model. Math. Anal. Numer. 30(2), 215–235 (1996)

    MathSciNet  MATH  Google Scholar 

  151. Rappaz, M., Bellet, M., Deville, M.: Modélisation numérique en science des matériaux. Presses Polytechniques et Universitaires Romandes, Lausanne (1998)

    MATH  Google Scholar 

  152. Rappaz, J., Swierkosz, M., Trophime, C.: Un modèle mathématique et numérique pour un logiciel de simulation tridumensionnelle d’induction électromagnétique. Tech. Rep., École Polytechnique Fédérale de Lausanne (1999)

    Google Scholar 

  153. Raviart, P.A., Thomas, J.M.: A mixed finite element method for 2nd order elliptic problems. In: Bänsch, E., Dold, A. (eds.) Mathematical Aspects of Finite Element Methods. Lecture Notes in Mathematics, vol. 606, p. 503. Springer, New York/Rome (1977)

    Google Scholar 

  154. Reitz, J., Milford, F.: Foundations of Electromagnetic Theory. Addison–Wesley, Reading (1975)

    Google Scholar 

  155. Robinson, N.: Electromagnetism. Oxford Physics Series. Clarendon, Oxford (1973)

    Google Scholar 

  156. Rochette, D.: Contributions à la simulation d’écoulements de plasma haute pression appliquée aux appareillages de coupure et torches à plasma. Ph.D. thesis, Université Blaise Pascal (2012). Habilitation Thesis

    Google Scholar 

  157. Rodríguez, A.A., Valli, A.: Eddy Current Approximation of Maxwell Equations. Springer, Milan (2010)

    MATH  Google Scholar 

  158. Rodríguez, A.A., Valli, A., Hernández, R.V.: A formulation of the eddy current problem in the presence of electric ports. Numer. Math. 113, 643–672 (2009)

    MathSciNet  MATH  Google Scholar 

  159. Rogier, F.: Problèmes mathématiques et numériques liés à l’approximation de la géométrie d’un corps diffractant dans les équations de l’électromagnétisme. Ph.D. thesis, École Polytechnique (1989)

    Google Scholar 

  160. Roy, S.S., Cramb, A.W., Hoburg, J.F.: Magnetic shaping of columns of liquid sodium. Metall. Trans. B 26(1), 1191–1197 (1995)

    Google Scholar 

  161. Sakane, J., Li, B., Evans, J.: Mathematical modeling of meniscus profile and melt flow in electromagnetic casters. Metall. Trans. B 19(2), 397–408 (1988)

    Google Scholar 

  162. Schercliff, J.A.: Magnetic shaping of molten metal columns. Proc. R. Soc. Lond. A Math. Phys. Sci. 275(1763), 455–473 (1981)

    Google Scholar 

  163. Schmidlin, G., Fischer, U., Andjelic, Z., Schwab, C.: Preconditioning the second-kind boundary integral equations for 3-D eddy current problems. Int. J. Numer. Meth. Eng. 10(5), 482–507 (1991)

    Google Scholar 

  164. Sethian, J.: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision and Materials Science. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  165. Sneyd, A., Moffat, H.: Fluid dynamical aspects of the levitation melting process. J. Fluid Mech. 117, 45–70 (1982)

    MathSciNet  MATH  Google Scholar 

  166. Steiner, G.: Simulation numérique de phénomènes MHD: application à l’électrolyse de l’aluminium. Ph.D. thesis, École Polytechnique Fédérale de Lausanne (2009)

    Google Scholar 

  167. Stephan, E.: Coupling of boundary element methods and finite element methods. In: Encyclopedia of Computational Mechanics, vol. 1, chap. 13, pp. 375–412. Wiley, Chichester (2005)

  168. Szabó, B., Babuška, I.: Finite Element Analysis. Wiley-Interscience, New York (1991)

    MATH  Google Scholar 

  169. Touzani, R.: Un problème de courant de Foucault avec inducteur filiforme. C. R. Acad. Sci. tome 319, Série I, 771–776 (1994)

    Google Scholar 

  170. Touzani, R.: Analysis of an eddy current problem involving a thin inductor. Comput. Methods Appl. Mech. Eng. 131, 233–240 (1996)

    MathSciNet  MATH  Google Scholar 

  171. Vérité, J.C.: Trifou: un code de calcul tridimensionnel des courants de foucault. EDF Bulletin de la direction des études et recherches, Série C, Mathématiques et Informatique 2, 79–92 (1983)

    Google Scholar 

  172. Vérité, J.C.: Traitement du potentiel scalaire magnétique extérieur dans le cas d’un domaine multiplement connexe. application au code TRIFOU. EDF Bulletin de la direction des études et recherches, Série C, Mathématiques et Informatique 1, 61–75 (1986)

    Google Scholar 

  173. Wang, J., Xie, D., Yao, Y., Mohammed, O.: A modified solution for large sparse symmetric linear systems in electromagnetic field analysis. IEEE Trans. Magn. 37(5), 3494–3497 (2001)

    Google Scholar 

  174. Wanser, S., Krähenbühl, L., Nicolas, A.: A computation of 3D induction hardening problems by combined finite and boundary element methods. IEEE Trans. Magn. 30(5), 3320–3323 (1994)

    Google Scholar 

  175. Wendland, W.L.: On the asymptotic convergence of boundary integral methods. In: Brebbia, C.A. (ed.) Boundary Element Methods, pp. 412–430. Springer, Berlin (1981)

    Google Scholar 

  176. Xue, S., Proulx, P., Boulos, M.I.: Extended-field electromagnetic model for inductively coupled plasma. J. Phys. D Appl. Phys. 34(4), 1897–1906 (2001)

    Google Scholar 

  177. Yamazaki, K.: Transient eddy current analysis for moving conductors using adaptive moving coordinate systems. IEEE Trans. Magn. 36(4), 785–789 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Touzani, R., Rappaz, J. (2014). Inductively Coupled Plasma Torches. In: Mathematical Models for Eddy Currents and Magnetostatics. Scientific Computation. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0202-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-0202-8_10

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-0201-1

  • Online ISBN: 978-94-007-0202-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics