Skip to main content

Trace Formulas and Coherent States

  • Chapter
  • 2661 Accesses

Part of the book series: Theoretical and Mathematical Physics ((TMP))

Abstract

The most known trace formula in mathematical physics is certainly the Gutzwiller trace formula linking the eigenvalues of the Schrödinger operator \(\hat{H}\) as Planck’s constant goes to zero (the semi-classical régime) with the closed orbits of the corresponding classical mechanical system. Gutzwiller gave a heuristic proof of this trace formula, using the Feynman integral representation for the propagator of \(\hat{H}\). In mathematics this kind of trace formula was first known as Poisson formula. It was proved first for the Laplace operator on a compact manifold, then for more general elliptic operators using the theory of Fourier-integral operators. Our goal here is to show how the use of coherent states allows us to give a rather simple and direct rigorous proof.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    See the definition in Sect. 5.2.

References

  1. Arnaud, J.A.: Hamiltonian theory of beam mode propagation. In: Wolf, E. (ed.) Progress in Optics XI. North-Holland, Amsterdam (1973)

    Google Scholar 

  2. Babich, V.: Eigenfunctions concentrated in a neighborhood of a closed geodesic. In: Babich, V.M. (ed.) Math. Problems in Wave Propagation Theory. Sem. Math., V.A. Steklov Math. Inst., vol. 9. Steklov Mathematical Institute, Leningrad (1970). Translated by Consultants Bureau, New York (1970)

    Google Scholar 

  3. Babich, V.M., Buldyrev, V.S.: Asymptotic Methods in Short Wave Diffraction Problems. Nauka, Moscow (1972)

    Google Scholar 

  4. Balian, R., Bloch, C.: Distribution of eigenfrequencies for the wave equation in a finite domain. Ann. Phys. 69, 76–160 (1972)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Balian, R., Bloch, C.: Distribution of eigenfrequencies for the wave equation in a finite domain. Ann. Phys. 85, 514–545 (1974)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Bily, J.M.: Propagation d’états cohérents et applications. Ph.D. thesis, Université de Nantes (2001)

    Google Scholar 

  7. Cassanas, R.: Hamiltoniens quantiques et symétries. Ph.D. thesis, Université de Nantes (2005)

    Google Scholar 

  8. Charbonnel, A.M., Popov, G.: Semiclassical asymptotics for several commuting operators. Commun. Partial Differ. Equ. 24, 283–323 (1998)

    Article  MathSciNet  Google Scholar 

  9. Chazarain, J.: Formule de Poisson pour les variétés riemanniennes. Invent. Math. 24, 65–82 (1974)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Chazarain, J.: Spectre d’un hamiltonien quantique et mécanique classique. Commun. Partial Differ. Equ. 6, 595–644 (1980)

    Article  MathSciNet  Google Scholar 

  11. Colin de Verdière, Y.: Spectre du Laplacien et longueurs des géodésiques périodiques I. Comment. Math. Helv. 27, 83–106 (1973)

    MATH  Google Scholar 

  12. Colin de Verdière, Y.: Equipartition of the eigenfunctions of quantized ergodic maps on the torus. Commun. Math. Phys. 102, 497–502 (1985)

    Article  MATH  Google Scholar 

  13. Colin de Verdière, Y.: Bohr–Sommerfeld rules to all orders. Ann. Henri Poincaré 6(5), 925–936 (2005)

    Article  ADS  MATH  Google Scholar 

  14. Combescure, M., Robert, D.: Quadratic quantum hamiltonians revisited. CUBO 8(1), 61–86 (2006)

    MathSciNet  MATH  Google Scholar 

  15. Combescure, M., Ralston, J., Robert, D.: A proof of the Gutzwiller semi-classical formula using coherent states decomposition. Commun. Math. Phys. 202, 463–480 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. De Gosson, M.: Maslov Classes, Metaplectic Representation and Lagrangian Quantization. Akademie Verlag, Berlin (1997)

    MATH  Google Scholar 

  17. Dimassi, M., Sjöstrand, J.: Spectral Asymptotics in the Semi-classical Limit. Lecture Note Series, vol. 268. Lond. Math. Soc., London (1999)

    Book  MATH  Google Scholar 

  18. Dozias, S.: Opérateurs h-pseudodifférentiels à flot périodique. Ph.D. thesis, Université de Paris-Nord (1994)

    Google Scholar 

  19. Duistermaat, J.J., Guillemin, V.: The spectrum of positive elliptic operators and periodic bicharacteristics. Invent. Math. 29, 39–79 (1975)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Folland, G.B.: Harmonic Analysis in the Phase Space. Princeton University Press, Princeton (1989)

    Google Scholar 

  21. Guillemin, V., Sternberg, S.: Geometric Asymptotics. Mathematical Surveys, vol. 14. AMS, Providence (1977)

    MATH  Google Scholar 

  22. Guillemin, V., Uribe, A.: Circular symmetry and the trace formula. Invent. Math. 96, 385–423 (1989)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Gutzwiller, M.: Periodic orbits and classical quantization conditions. J. Math. Phys. 12, 343–358 (1971)

    Article  ADS  Google Scholar 

  24. Gutzwiller, M.: Chaos in Classical and Quantum Mechanics. Springer, Berlin (1991)

    Google Scholar 

  25. Hagedorn, G.: Semiclassical quantum mechanics III. Ann. Phys. 135, 58–70 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  26. Hagedorn, G.: Semiclassical quantum mechanics IV. Ann. Inst. Henri Poincaré. Phys. Théor. 42, 363–374 (1985)

    MathSciNet  Google Scholar 

  27. Hall, K.R., Meyer, G.R.: Introduction to Hamiltonian Dynamical Systems and the N-body problem. Applied Mathematical Sciences, vol. 90. Springer, Berlin (1991)

    Google Scholar 

  28. Helffer, B., Martinez, A., Robert, D.: Ergodicité et limite semi-classique. Commun. Math. Phys. 109, 313–326 (1987)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Helffer, B., Robert, D.: Calcul fonctionnel par la transformation de Mellin et opérateurs admissibles. J. Funct. Anal. 53(3), 246–268 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  30. Helffer, B., Robert, D.: Puits de potentiels généralisés et asymptotique semi-classique. Ann. Inst. Henri Poincaré. Phys. Théor. 41, 291–331 (1984)

    MathSciNet  MATH  Google Scholar 

  31. Helffer, B., Sjöstrand, J.: Multiple wells in the semi-classical limit I. Commun. Partial Differ. Equ. 9, 337–408 (1984)

    Article  MATH  Google Scholar 

  32. Heller, E.J.: Time dependent approach to semiclassical dynamics. J. Chem. Phys. 62, 1544–1555 (1975)

    Article  ADS  Google Scholar 

  33. Heller, E.J.: Quantum localization and the rate of exploration of phase space. Phys. Rev. A 35, 1360–1370 (1987)

    Article  ADS  Google Scholar 

  34. Hörmander, L.: The spectral function of an elliptic operator. Acta Math. 121, 173–218 (1968)

    Article  Google Scholar 

  35. Hörmander, L.: The Analysis of Linear Partial Differential Operators. Grundlehren der Mathematischen Wissenschaften, vol. 256. Springer, Berlin (1983)

    Book  Google Scholar 

  36. Keller, J.B., Streifer, W.: Complex rays with an application to Gaussian beams. J. Opt. Soc. Am. 61, 40–43 (1971)

    Article  ADS  Google Scholar 

  37. Khuat-Duy, D.: Formule des traces semi-classique pour un énergie critique et construction de quasi-modes à l’aide d’états cohérents. Ph.D. thesis, Université de Paris-Dauphine (1996)

    Google Scholar 

  38. Leray, J.: Lagrangian Analysis and Quantum Mechanics. A Mathematical Structure Related to Asymptotic Expansions and the Maslov Index. MIT Press, Boston (1981) (trans. from French)

    MATH  Google Scholar 

  39. Littlejohn, R.: The semiclassical evolution of wavepackets. Phys. Rep. 138, 193–291 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  40. Meinrenken, E.: Semi-classical principal symbols and Gutzwiller’s trace formula. Rep. Math. Phys. 31, 279–295 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. Paul, T., Uribe, A.: Sur la formule semi-classique des traces. C. R. Math. Acad. Sci. Ser. I, Math. 313(1), 217–222 (1991)

    MathSciNet  MATH  Google Scholar 

  42. Paul, T., Uribe, A.: A construction of quasi-modes using coherent states. Ann. Inst. H. Poincaré. Phys. Théor. 59(4), 357–381 (1993)

    MathSciNet  MATH  Google Scholar 

  43. Paul, T., Uribe, A.: On the pointwise behavior of semiclassical measures. Commun. Math. Phys. 175, 229–256 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. Petkov, V., Popov, G.: Semiclassical trace formula and clustering of eigenvalues for Schrödinger operators. Ann. Inst. Henri Poincaré. Phys. Théor. 68, 17–83 (1998)

    MathSciNet  MATH  Google Scholar 

  45. Petkov, V., Robert, D.: Asymptotique semiclassique du spectre d’hamiltoniens quantiques et trajectoires classiques périodiques. Commun. Partial Differ. Equ. 10, 365–390 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  46. Ralston, J.: On the construction of quasimodes associated with stable periodic orbits. Commun. Math. Phys. 51, 219–242 (1976)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  47. Ralston, J.: Gaussian beams and propagation of singularities. In: Studies in Partial Differential Equations. MAA Stud. Math., vol. 23, pp. 246–248 (1982)

    Google Scholar 

  48. Robert, D.: Autour de L’approximation Semi-classique. Progress in Mathematics, vol. 68. Birkhäuser, Basel (1987)

    MATH  Google Scholar 

  49. Robert, D.: Propagation of coherent states in quantum mechanics and applications. In: Wang, X.P., et al. (ed.) Partial Differential Equations and Applications. Proceedings of the CIMPA School, Lanzhou, China, July 2004. Société Mathématique de France, Paris (2004). Sémin. Congr. 15, 181–252 (2007)

    Google Scholar 

  50. Robin, J., Salamon, D.: The Maslov index for path. Topology 32, 827–844 (1993)

    Article  MathSciNet  Google Scholar 

  51. Schrödinger, E.: Der stetige übergang von der Mikro- zur Makromechanik. Naturwissenschaften 14, 664–666 (1926)

    Article  ADS  Google Scholar 

  52. Weinstein, A.: Asymptotics of the eigenvalues clusters for the Laplacian plus a potential. Duke Math. J. 44, 883–892 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  53. Wilkinson, M.: A semi-classical sum rule for matrix elements of classically chaotic systems. J. Phys. A, Math. Gen. 20, 2415–2423 (1987)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Combescure, M., Robert, D. (2012). Trace Formulas and Coherent States. In: Coherent States and Applications in Mathematical Physics. Theoretical and Mathematical Physics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0196-0_5

Download citation

Publish with us

Policies and ethics