Skip to main content

Weyl Quantization and Coherent States

  • Chapter
  • 2669 Accesses

Part of the book series: Theoretical and Mathematical Physics ((TMP))

Abstract

It is well known from the work of Berezin (Commun. Math. Phys. 40:153–174, 1975) in 1975 that the quantization problem of a classical mechanical system is closely related with coherent states. In particular coherent states help to understand the limiting behavior of a quantum system when the Planck constant ħ becomes negligible in macroscopic units. This problem is called the semi-classical limit problem.

In this chapter we discuss properties of quantum systems when the configuration space is the Euclidean space ℝn, so that in the Hamiltonian formalism, the phase space is ℝn×ℝn with its canonical symplectic form σ. The quantization problem has many solutions, so we choose a convenient one, introduced by Weyl (The Classical Groups, 1997) and Wigner (Group Theory and Its Applications to Quantum Mechanics of Atomic Spectra, 1959).

We study the symmetries of Weyl quantization, the operational calculus and applications to propagation of observables.

We show that Wick quantization is a natural bridge between Weyl quantization and coherent states. Applications are given of the semi-classical limit after introducing an efficient modern tool: semi-classical measures.

We illustrate the general results proved in this chapter by explicit computations for the harmonic oscillator. More applications will be given in the following chapters, in particular concerning propagators and trace formulas for a large class of quantum systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Recall that \(f \in\mathcal{S}(\mathbb{R}^{n})\) means that f is a smooth function in ℝn and for every multiindices α, β, \(x^{\alpha}\partial_{x}^{\beta}u\) is bounded in ℝn. It has a natural topology. \(\mathcal{S}^{\prime}(\mathbb{R}^{n})\) is the linear space of continuous linear form on \(\mathcal{S}(\mathbb{R}^{n})\).

  2. 2.

    This means that for every γ, sup ħ∈]0,1] γ A<+∞.

  3. 3.

    That λ is a non-critical value for H means that ∇H(z)≠0 if H(z)=λ.

References

  1. Beals, R.: Propagation des singularités pour des opérateurs. In: Journées E.D.P Saint Jean de Monts, conf., No. 19 (1980)

    Google Scholar 

  2. Berezin, F.A.: General concept of quantization. Commun. Math. Phys. 40, 153–174 (1975)

    Article  MathSciNet  ADS  Google Scholar 

  3. Berezin, F.A., Shubin, M.A.: The Schrödinger Equation. Kluwer Academic, Dordrecht (1991)

    Book  MATH  Google Scholar 

  4. Bouzouina, A., Robert, D.: Uniform semiclassical estimates for the propagation of quantum observables. Duke Math. J. 111, 223–252 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Burq, N.: Mesures semi-clasiques et mesures de Défaut. In: Séminaire N. Bourbaki (1996–1997)

    Google Scholar 

  6. Dimassi, M., Sjöstrand, J.: Spectral Asymptotics in the Semi-classical Limit. Lecture Note Series, vol. 268. Lond. Math. Soc., London (1999)

    Book  MATH  Google Scholar 

  7. Egorov, Y.V.: On canonical transformations of pseudodifferential operators. Usp. Mat. Nauk 25, 235–236 (1969)

    Google Scholar 

  8. Ehrenfest, P.: Bemerkungüber die angenaherte gultigkeit der klassischen mechanik innerhalb der quantenmechanik. Z. Phys. 45, 455–456 (1927) (Remarks on the approximate validity of classical mechanics in quantum mechanics)

    Article  ADS  Google Scholar 

  9. Folland, G.B.: Harmonic Analysis in the Phase Space. Princeton University Press, Princeton (1989)

    Google Scholar 

  10. Gérard, P.: Microlocal defect measures. Commun. Partial Differ. Equ. 16, 1761–1794 (1991)

    Article  MATH  Google Scholar 

  11. Helffer, B., Martinez, A., Robert, D.: Ergodicité et limite semi-classique. Commun. Math. Phys. 109, 313–326 (1987)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Helffer, B., Robert, D.: Calcul fonctionnel par la transformation de Mellin et opérateurs admissibles. J. Funct. Anal. 53(3), 246–268 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hepp, K.: The classical limit of quantum mechanical correlation functions. Commun. Math. Phys. 35, 265–277 (1974)

    Article  MathSciNet  ADS  Google Scholar 

  14. Hörmander, L.: The spectral function of an elliptic operator. Acta Math. 121, 173–218 (1968)

    Article  Google Scholar 

  15. Hörmander, L.: The Analysis of Linear Partial Differential Operators. Grundlehren der Mathematischen Wissenschaften, vol. 256. Springer, Berlin (1983)

    Book  Google Scholar 

  16. Hudson, R.L.: When is the Wigner quasi-probability non negative? Rep. Math. Phys. 6, 249–252 (1974)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Ivrii, V.: Microlocal Analysis and Precise Spectral Asymptotics. Springer, Berlin (1998)

    MATH  Google Scholar 

  18. Lerner, N.: The Wick calculus of pseudo-differential operators and some of its applications. CUBO 5(1), 213–236 (2003)

    MathSciNet  MATH  Google Scholar 

  19. Lions, P.L., Paul, T.: Sur les mesures de Wigner. Rev. Mat. Iberoam. 9, 553–618 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  20. Robert, D.: Autour de L’approximation Semi-classique. Progress in Mathematics, vol. 68. Birkhäuser, Basel (1987)

    MATH  Google Scholar 

  21. Soto, F., Claverie, P.: When are the Wigner function of multidimensional system non negative? J. Math. Phys. 24, 97–100 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  22. Tataru, D.: Phase space transform and microlocal analysis. Publ. Cent. Ri. Mat. Ennio Giorgi, pp. 505–524 (2004)

    Google Scholar 

  23. Unterberger, A.: Oscillateur harmonique et opérateurs pseudo-différentiels. Ann. Inst. Fourier XXXIX(3), 201–221 (1979)

    Article  MathSciNet  Google Scholar 

  24. Weil, A.: Sur certains groupes d’opérateurs unitaires. Acta Math. 111, 143–211 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  25. Weyl, H.: The Classical Groups. Princeton Landmarks in Mathematics. Princeton University Press, Princeton (1997). Their invariants and representations, Fifteenth printing, Princeton Paperbacks

    MATH  Google Scholar 

  26. Wigner, E.P.: Group Theory and Its Applications to Quantum Mechanics of Atomic Spectra. Academic Press, New York (1959)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Combescure, M., Robert, D. (2012). Weyl Quantization and Coherent States. In: Coherent States and Applications in Mathematical Physics. Theoretical and Mathematical Physics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0196-0_2

Download citation

Publish with us

Policies and ethics