Skip to main content

Role of brassinosteroids on horticultural crops

  • Chapter
  • First Online:
Brassinosteroids: A Class of Plant Hormone

Abstract

With the progress of chemical synthesis technology, structurally modified brassinosteroids (BRs) with greater stability, under field conditions have been synthesized on a commercial scale and registered as plant growth regulators for specific horticultural crops. In both fundamental and application-oriented research, BRs and their analogues play prominent roles in various physiological processes including, seed development and germination, flower sex expression, fruit development, improvement of quantity and quality of crops, and resistance to various biotic and abiotic stresses. It is worthy to note here that the involvement of BRs in plant protection from adverse environmental stress and pesticides seems to have good prospects, since BRs appear nontoxic and environmentally friendly. It is well known that horticultural crops have a great variety of produce organs as well as high yield and output values. Moreover, their production is susceptible to sub-optimum environmental conditions, especially in facilities cultivation. Thus, practical application of BRs to horticultural crops for enhancing crops production and protection may have a promising prospect in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ali, B., Hayat, S., Aiman Hasan, S., and Ahmad, A., 2006. Effect of root applied 28-homobrassinolide on the performance of Lycopersicon esculentum. Sci. Hortic. 110: 267–273.

    Article  CAS  Google Scholar 

  • Ali, B., Hayat, S., Fariduddin, Q., and Ahmad, A., 2008. A 24-Epibrassinolide protects against the stress generated by salinity and nickel in Brassica juncea. Plant Physiol. Biochem. 72: 1387–1392.

    CAS  Google Scholar 

  • Almeida, J., Fidalgo, F., Confraria A., Santos, A., Pires, H., and Santos, I., 2005. Effect of hydrogen peroxide on catalase gene expression, isoform activities and levels in leaves of potato sprayed with homobrassinolide and ultrastructural changes in mesophyll cells. Funct. Plant Biol. 32: 707–720.

    Article  CAS  Google Scholar 

  • Anuradha, S., and Rao, S., 2009. Effect of 24-epibrassinolide on the photosynthetic activity of radish plants under cadmium stress. Photosynthetica 47: 317-320.

    Google Scholar 

  • Aristeo Cortes, P., Terrazas, T., Colinas León, T., and Larqué-Saavedra, A., 2003. Brassinosteroid effects on the precocity and yield of cladodes of cactus pear (Opuntia ficus-indica (L) Mill.). Sci. Hortic. 97: 65–73.

    Article  CAS  Google Scholar 

  • Azpeitia, A., Chan, J., Saenz, L., and Oropeza, C., 2003. Effect of 22(S), 23(S)-homobrassinolide on somatic embryogenesis in plumule explants of Cocos nucifera (L.) cultured in vitro. J. Hortic. Sci. Biotech. 78: 591–596.

    CAS  Google Scholar 

  • Bajguz, A., and Hayat, S., 2009. Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiol. Biochem. 47: 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Bishop, G., 2003. Brassinosteroid mutants of crops. J. Plant Growth Regul. 22: 325–335.

    Article  CAS  PubMed  Google Scholar 

  • Bishop, G., Nomura, T., Yokota, T., Harrison, K., Noguchi, T., Fujioka, S., Takatsuto, S., Jones, J. and Kamiya, Y., 1999. The tomato DWARF enzyme catalyses C-6 oxidation in brassinosteroid biosynthesis. Proc. Natl. Acad. Sci. USA. 96: 1761–1766.

    Article  CAS  Google Scholar 

  • Bishop, G., Harrison, K., and Jones, J., 1996. The tomato Dwarf gene isolated by heterologous transposon tagging encodes the first member of a new cytochrome P450 family. Plant Cell 8: 959–969.

    Article  CAS  PubMed  Google Scholar 

  • Campos, M., Almeida, M., Rossi, M., Martinelli, A., Martinelli, A., Junior, C., Figueira, A., Rampelotti-Ferreira F.T., Vendramim, J.D., Benedito, V.A. and Peres, L., 2009. Brassinosteroids interact negatively with jasmonates in the formation of anti-herbivory traits in tomato. J. Exp. Bot. 60: 4347-4361.

    Google Scholar 

  • Cervantes, E., 2001. Brassinolide plays in the hypoxia band. Trends Plant Sci. 6: 240.

    Article  CAS  Google Scholar 

  • Dhaubhadel, S., Browning, K., Gallie, D., and Krishna, P., 2002. Brassinosteroid functions to protect the translational machinery and heat-shock protein synthesis following thermal stress. Plant J. 29: 681–691.

    Article  CAS  PubMed  Google Scholar 

  • Dhaubhadel, S., Chaudhary, S., Dobinson, K., and Krishna, P., 1999. Treatment of 24-epibrassinolide, a brassinosteroid, increases the basic thermotolerance of Brassica napus and tomato seedlings. Plant Mol. Biol. 40: 333–342.

    Article  CAS  PubMed  Google Scholar 

  • Ding, J., Shi, K., Zhou, Y., and Yu, J., 2009a. Effects of root and foliar applications of 24-epibrassinolide on Fusarium wilt and antioxidant metabolism in cucumber Roots. Hortsci. 44: 1340–1345.

    Google Scholar 

  • Ding, J., Shi, K., Zhou, Y., and Yu, J., 2009b. Microbial community responses associated with the development of Fusarium oxysporum f.sp.cucumerinum after 24-epibrassinolide applications to shoots and roots in cucumber. Eur. J. Plant Pathol. 124: 141–150.

    Article  CAS  Google Scholar 

  • Drew, M., 1997. Oxygen deficiency and root metabolism: Injury and acclimation under hypoxia and anoxia. Annu. Rev. Plant Phys. Plant Mol. Bio1. 48: 223–250.

    Article  CAS  Google Scholar 

  • Ershova, A., and Khripach, V., 1996. Effect of epibrassinolide on lipid peroxidation in Pisum sativum at normal aeration and under oxygen deficiency. Russ. J. Plant Physiol. 43: 750-752.

    CAS  Google Scholar 

  • Fariduddin, Q., Khanam, S., Hasan, S., Ali, B., Hayat, S., and Ahmad, A., 2009. Effect of 28-homobrassinolide on the drought stress-induced changes in photosynthesis and antioxidant system of Brassica juncea L. Acta Physiol. Plant. 31: 889–897

    Article  CAS  Google Scholar 

  • Fariduddin, Q., Yusuf, M., Hayat, S., and Ahmad, A., 2009. Effect of 28-homobrassinolide on antioxidant capacity and photosynthesis in Brassica juncea plants exposed to different levels of copper. Environ. Exp. Bot. 66: 418–424.

    Article  CAS  Google Scholar 

  • Ferguson, B., Ross, J., and Reid, J., 2005. Nodulation phenotypes of gibberellin and brassinosteroid mutants of pea. Plant Physiol. 138: 2396–2405.

    Article  CAS  PubMed  Google Scholar 

  • Franck-Duchenne, M., Wang, Y., Tahar, S., and Beachy, R., 1998. In vitro stem elongation of sweet pepper in media containing 24-epi-brassinolide. Plant Cell, Tissue & Org. Cult. 53: 79–84.

    Article  CAS  Google Scholar 

  • Fukuta, N., Fukuzono, K., Kawaide, H., Abe, H., and Nakayama, M., 2006. Physical restriction of pods causes seed size reduction of a brassinosteroid-deficeint Faba bean (Vicia faba). Ann. bot. 97: 65–69.

    Article  CAS  PubMed  Google Scholar 

  • Fu, F., Mao, W., Shi, K., Zhou, Y., Asami, T., and Yu, J., 2008. A role of brasssinosteroids in early fruit development in cucumber. J. Exp. Bot. 59: 2299–2308.

    Article  CAS  PubMed  Google Scholar 

  • Goetz, M., Godt, D., and Roitsch, T., 2000. Tissue-specific induction of the mRNA for an extracellular invertase isoenzyme of tomato by brassinosteroids suggests a role for steroid hormones in assimilate partitioning. Plant J. 22: 515–522.

    Article  CAS  PubMed  Google Scholar 

  • Gomes, M., Campostrini, E., Leal, N., Viana, A., Ferraz, T., Siqueira, L., Rosa, R., Netto, A., Nuñez-Vázquez, M., and Zullo, M., 2006. Brassinosteroid analogue effects on the yield of yellow passion fruit plants (Passiflora edulis f. flavicarpa). Sci. Hortic. 110: 235–240.

    Article  CAS  Google Scholar 

  • Gray, W., 2004. Hormonal regulation of plant growth and development. PLoS Biol. 2: 1270–1273.

    Article  CAS  Google Scholar 

  • Guan, M., and Roddick, J., 1988. Epibrassinolide inhibition of development of excised, adventitious and intact roots of tomato (Lycopersicon esculentum): comparison with the effects of steroidal estrogens. Physiol. Plant. 74: 720–726.

    Article  CAS  Google Scholar 

  • Haubrick, L., and Assmann, S., 2006. Brassinosteroids and plant function: some clues, more puzzles. Plant Cell Env. 29: 446–457.

    Article  CAS  Google Scholar 

  • Hayat, S., and Ahmad, A., 2003. Soaking seeds of Lens culinaris with 28-homobrassinolide increased nitrate reductase activity and grain yield in the field in India. Ann. Appl. Biol. 143: 121–124.

    Article  CAS  Google Scholar 

  • Hayat, S., Ahmad, A., Mobin, M., Hussain, A., and Fariduddin Q., 2000. Photosynthetic rate, growth, and yield of mustard plants sprayed with 28-homobrassinolide. Photosynthetica 38: 469–471.

    Article  CAS  Google Scholar 

  • Hayat, S., Ali, B., Aiman Hasan, S., and Ahmad, A., 2007. Brassinosteroid enhanced the level of antioxidants under cadmium stress in Brassica juncea. Environ. Exp. Bot. 60: 33–41.

    Article  CAS  Google Scholar 

  • Holton, N., Caño-Delgado, A., Harrison, K., Montoya, T., Chory, J., and Bishop, G., 2007. Tomato BRASSINOSTEROID INSENSITIVE1 is required for systemin-induced root elongation in Solanum pimpinellifolium but is not essential for wound signaling. Plant Cell 19: 1709–1717.

    Article  CAS  PubMed  Google Scholar 

  • Howell, W., Keller III, G., Kirkpatrick, J., Jenkins, R., Hunsinger, R., and McLaughlin, E., 2007. Effects of the plant steroidal hormone, 24-epibrassinolide, on the mitotic index and growth of onion (Allium cepa) root tips. Genet. Mol. Res. 6: 50–58.

    CAS  PubMed  Google Scholar 

  • Jager, C., Symons, G., Ross, J., Smith, J., and Reid, J., 2005. The brassinosteroid growth response in pea is not mediated by changes in gibberellin content. Planta 221: 141–148.

    Article  CAS  PubMed  Google Scholar 

  • Jager, C., Symons, G., Ross, J., and Reid, J., 2008. Do brassinosteroids mediate the water stress response? Physiol. Plant. 133: 417–425.

    Article  CAS  PubMed  Google Scholar 

  • Jonesheld, S., Vandoren, M., and Lockwood, T., 1996. Brassinolide application to Lepidium sativum seeds and the effects on seedling growth. J. Plant Growth Regul. 15: 63–67.

    Article  CAS  Google Scholar 

  • Kang, Y., Guo, S., Li, J., and Duan, J., 2007. Effects of 24-epibrassinolide on antioxidant system in cucumber seedling roots under hypoxia stress. Agri. Sci. China 6: 281-289.

    CAS  Google Scholar 

  • Kang, Y., Guo, S., Li, J., and Duan, J., 2009. Effect of root applied 24-epibrassinolide on carbohydrate status and fermentative enzyme activities in cucumber (Cucumis sativus L.) seedlings under hypoxia. Plant Growth Regul. 57: 259-269.

    Article  CAS  Google Scholar 

  • Katsumi, M., 1985. Interaction of a brassinosteroid with IAA and GA3 in the elongation of cucumber hypocotyl sections. Plant Cell Physiol. 26: 615–626.

    CAS  Google Scholar 

  • Kesy, J., Trzaskalsky, A., Galoch, E., and Kopcewicz, J., 2003. Inhibitory effect of brassinosteroids on the flowering of the short-day plant Pharbitis nil. Biol. Plant. 47: 597–600.

    Article  CAS  Google Scholar 

  • Khripach, V., Ahabinskii, V., and de Groot A., 2000. Twenty years of brassinosteroids: steroidal plant hormones warrant better crops for the XXI century. Ann. Bot. 86: 441–447.

    Article  CAS  Google Scholar 

  • Koka, C., Eric Cerny, R., Gardner, R., Noguchi, T., Fujioka, S., Takatsuto, S., Yoshida, S. And Clouse, S., 2000. A Putative role for the tomato genes DUMPY and CURL-3 in brassinosteroid biosynthesis and response. Plant Physiol. 122: 85–98.

    Article  CAS  PubMed  Google Scholar 

  • Korableva, N., Platonova, T., Dogonadze, M., and Evsunina, A., 2002. Brassinolide effect on growth of apical meristems, ethylene production, and abscisic acid content in potato tubers. Biol. Plant. 45: 39–43.

    Article  CAS  Google Scholar 

  • Li, K., Wang, H., Han, G., Wang, Q., and Fan, J., 2008. Effects of brassinolide on the survival, growth and drought resistance of Robinia pseudoacacia seedlings under water-stress. New Forest, 35: 255–266.

    Article  Google Scholar 

  • Lisso, J., Altmann, T., and Müssig, C., 2006. Metabolic changes in fruits of the tomato d x mutant. Phytochem. 67: 2232–2238.

    Article  CAS  Google Scholar 

  • Mazorra, L., Núñez, M., Hechavarria, M., Coll, F., and Sánchez-Blanco, M., 2002. Influence of brassinosteroids on antioxidant enzymes activity in tomato under different temperatures. Biol. Plant. 45: 593–596.

    Article  CAS  Google Scholar 

  • Montoya, T., Nomura, T., Yokota, T., Farrar, K., Harrison, K., Jones, J., Kaneta, T., Kamiya, Y., Szekeres, M. and Bishop, G., 2005. Patterns of Dwarf expression and brassinosteroid accumulation in tomato reveal the importance of brassinosteroid synthesis during fruit development. Plant J. 42: 262–269.

    Article  CAS  PubMed  Google Scholar 

  • Müssig, C., 2005. Brassinosteroid-promoted growth. Plant Biol. 7: 110–117.

    Article  PubMed  Google Scholar 

  • Nakajima, N., and Toyama, S., 1999. Effects of epibrassinolide on sugar transport and allocation to the epicotyl in cucumber seedlings. Plant Prod. Sci. 2: 165–171.

    Article  CAS  Google Scholar 

  • Nakajima, N., and Toyama, S., 1995. Study on brassinosteroid-enhanced sugar accumulation in cucumber epicotyls. Jpn. J. Crop Sci. 64: 616–621.

    CAS  Google Scholar 

  • Nomura, T., Jager, C., Kitasaka, Y., Takeuchi, K., Fukami, M., Yoneyama, K., Matsushita, Y., Nyunoya, H., Takatsuto, S., Fujioka, S., Smith, J., Kerckhoffs, H., Reid, J. and Yokota, T. 2004. Brassinosteroid deficiency due to truncated steroid 5α-reductase causes dwarfism in the lk mutant of pea. Plant Physiol. 135: 2220–2229.

    Article  CAS  PubMed  Google Scholar 

  • Nomura, T., Ueno, M., Yamada Y., Takatsuto, S., Takeuchi, Y., and Yokota, T., 2007. Roles of brassinosteroids and related mRNAs in pea seed growth and germination. Plant Physiol. 143: 1680–1688.

    Article  CAS  PubMed  Google Scholar 

  • Ogweno, J., Song, X., Shi, K., Hu, W., Mao, W., Zhou, Y., Yu, J. and Nogués, S., 2008. Brassinosteroids alleviate heat-induced inhibition of photosynthesis by increasing carboxylation efficiency and enhancing antioxidant systems in Lycopersicon esculentum. J. Plant Growth Regul. 27: 49–57.

    Article  CAS  Google Scholar 

  • Papadopoulou, E., and Grumet, R., 2005. Brassinosteriod-induced femaleness in cucumber and relationship to ethylene production. Hortsci. 40: 1763-1767.

    Google Scholar 

  • Park, W., 1998. Effect of epibrassinolide on hypocotyl growth of the tomato mutant diageotropica. Planta 207: 120–124.

    Article  CAS  PubMed  Google Scholar 

  • Peng, J., Tang, X., and Feng, H., 2004. Effects of brassinolide on the physiological properties of litchi pericarp (Litchi chinensis cv. nuomoci). Sci. Hortic. 101: 407–416.

    Article  CAS  Google Scholar 

  • Pereira-Netto, A., Cruz-Silva, C., Schaefer, S., Ramirez, J., and Galagovsky, L., 2006. Brassinosteroid-stimulated branch elongation in the marubakaido apple rootstock. Trees 20: 286–291.

    Article  CAS  Google Scholar 

  • Pereira-Netto, A., Roessner, U., Fujioka, S., Bacic, A., Asami, T., Yoshida, S. and Clouse, S., 2009. Shooting control by brassinosteroids: metabolomic analysis and effect of brassinazole on Malus prunifolia, the Marubakaido apple rootstock. Tree Physiol. 29: 607–620.

    Article  CAS  PubMed  Google Scholar 

  • Piñol, R., and Simón, E., 2009. Effect of 24-epibrassinolide on chlorophyll fluorescence and photosynthetic CO2 assimilation in Vicia faba plants treated with the photosynthesis-inhibiting herbicide Terbutryn. J. Plant Growth Regul. 28: 97–105.

    Article  Google Scholar 

  • Ramonell, K., Kuang, A., Porterfield, D., Crispi, M., Xiao, Y., McClure, G. and Musgrave, M., 2001. Influence of atmospheric oxygen on leaf structure and starch deposition in Arabidopsis thaliana. Plant Cell Env. 24: 419-428.

    Article  CAS  Google Scholar 

  • Rao, S., Vardhini, B., Sujatha, E., and Anuradha, S., 2002. Brassinosteroids-A new class of phytohormones. Curr. Sci. 82: 1239-1245.

    Google Scholar 

  • Roddick, J., Rijnenberg, A., and Ikekawa, N., 1993. Developmental effects of 24-epibrassinolide in excised roots of tomato grown in vitro. Physiol. Plant. 87: 453–458.

    Article  CAS  Google Scholar 

  • Roth, U., Friebe, A., and Schnabl, H., 2000. Resistance induction in plants by a brassinosteroid-containing extract of Lychnis viscaria L. Zeitschrift Naturforschung 55: 552–559.

    CAS  Google Scholar 

  • Sam, O., Núñez, M., Ruiz-Sánchez, M., Delľamico, J., Falcón, V., Dela Rosa, M. and Seoane, J., 2001. Effect of a brassinosteroid analogue and high temperature stress on leaf ultrastructure of Lycopersicon esculentum. Biol. Plant. 44: 213–218.

    Article  Google Scholar 

  • Sasaki, H., 2002. Brassinolide promotes adventitious shoot regeneration from cauliflower hypocotyl segments. Plant Cell Tiss. Org. 71: 111–116.

    Article  CAS  Google Scholar 

  • Schaefer, S., Medeiro, S., Ramirez, J., Galagovsky, L., and Pereira-Netto, A., 2002. Brassinosteroid-driven enhancement of the in vitro multiplication rate for the marubakaido apple rootstock [Malus prunifolia (Willd.) Borkh]. Plant Cell Rep. 20: 1093–1097.

    Article  CAS  Google Scholar 

  • Sharma, P., and Bhardwaj, R., 2007. Effects of 24-epibrassinolide on growth and metal uptake in Brassica juncea L. under copper metal stress. Acta Physiol. Plant. 29: 259–263.

    Article  CAS  Google Scholar 

  • Sharma, P., Bhardwaj, R., Arora, N., Arora, H., and Kumar, A., 2008. Effects of 28-homobrassinolide on nickel uptake, protein content and antioxidative defence system in Brassica juncea. Biol. Plant. 52: 767–770.

    Article  CAS  Google Scholar 

  • Singh, I., and Shono, M., 2005. Physiological and molecular effects of 24-epibrassinolide, a brassinosteroid on thermotolerance of tomato. Plant Growth Regul. 47: 111–119.

    Article  CAS  Google Scholar 

  • Sondhi, N., Bhardwaj, R., Kaur, S., Kumar, N., and Singh, B., 2008. Isolation of 24-epibrassinolide from leaves of Aegle marmelos and evaluation of its antigenotoxicity employing Allium cepa chromosomal aberration assay. Plant Growth Regul. 54: 217–224.

    Article  CAS  Google Scholar 

  • Symons, G., Davies, C., Shavrukov, Y., Dry, I., Reid, J., and Thomas, M., 2006. Grapes on steroids. Brassinosteroids are involved in grape berry ripening. Plant Physiol. 140: 150–158.

    Article  CAS  PubMed  Google Scholar 

  • Upretik, K., and Murtig, S., 2004. Effects of brassinosteroids on growth, nodulation, phytohormone content and nitrogenase activity in French bean under water stress. Biol. Plant. 48: 407–411.

    Article  Google Scholar 

  • Vardhini, B., and Rao, S., 2002. Acceleration of ripening of tomato pericarp discs by brassinosteroids. Phytochem. 61: 843–847.

    Article  Google Scholar 

  • Vasyukova, N., Chalenko, G., Kaneva, I., Khripach, V., and Ozeretskovskaya, O., 1994. Brassinosteroids and potato late blight. Appl. Biochem. Microbiol. 30: 464–470.

    CAS  Google Scholar 

  • Xia, X., Huang, Y., Wang, L., Huang, L., Yu, Y., Zhou, Y. and Yu, J.,, 2006. Pesticides-induced depression of photosynthesis was alleviated by 24-epibrassinolide pretreatment in Cucumis sativus L. Pestic. Biochem. Phys. 86: 42–48.

    Article  CAS  Google Scholar 

  • Xia, X., Wang, Y., Zhou, Y., Tao, Y., Mao, W., Shi, K., Asami, T., Chen, Z., and Yu, J., 2009. Reactive oxygen species are involved in brassinosteroid-induced stress tolerance in cucumber. Plant Physiol. 150: 801–814.

    Article  CAS  PubMed  Google Scholar 

  • Xia, X., Zhang, Y., Wu, J., Wang, J., Zhou, Y., Shi, K., Yu, Y. and Yu J., 2009. Brassinosteroids promote metabolism of pesticides in cucumber. J. Agric. Food Chem. 57: 8406–8413.

    Article  CAS  PubMed  Google Scholar 

  • Yokota, T., Sato, T., Takeuchi,Y., Nomura, T., Uno, K., Watanabe, T., and Takatsuto, S., 2001. Roots and shoots of tomato produce 6-deoxo-28-norcathasterone, 6-deoxo-28-nortyphasterol and 6-deoxo-28-norcastasterone, possible precursors of 28-norcastasterone. Phytochem. 58: 233-238.

    Google Scholar 

  • Yu, J., Zhou, Y., Ye, S., and Huang, L., 2002. A 24-epibrassinolide and abscisic acid protect cucumber seedlings from chilling injury. J. Hortic. Sci. Biotech. 77: 470–473.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Kang, Y.Y., Guo, S.R. (2011). Role of brassinosteroids on horticultural crops. In: Hayat, S., Ahmad, A. (eds) Brassinosteroids: A Class of Plant Hormone. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0189-2_9

Download citation

Publish with us

Policies and ethics