Skip to main content

Physiological effects related to brassinosteroid application in plants

  • Chapter
  • First Online:
Book cover Brassinosteroids: A Class of Plant Hormone

Abstract

Brassinosteroids are plant hormones whose functions have been discovered in the past years. In order to confirm scientifically the biological effects caused exclusively by these compounds, different tools can be used, such as BRdeficient or BR-perceptive mutants, molecular studies, biological assays, application of brassinosteroid biosynthesis inhibitors, endogenous quantification and exogenous application. This work aims at relating the physiological effects in plants when exposed to different dosages and analogues of brassinosteroids during different phases of development (germination, flowering, fructification) and when submitted to biotic and abiotic stress (pathogens, water stress, saline stress, hypoxia, temperature, heavy metals and pesticides) as well as the particularities related to tropisms, circadian rhythms and interactions with other plant hormones. The use of brassinosteroids with the objective of increasing crop yield in the field and to improve the quality of the seedlings has also received attention in recent papers. The main objective of this chapter is to discuss the physiological effects that occur in cells, tissue or whole plants when submitted to brassinosteroid applications, taking into account the possible mechanism of action of these compounds and their practical use in agriculture, describing the analogues and the dosages used in field and laboratory experiments during the last 10 years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

BR:

brassinosteroid

BL:

brassinolide

EBL:

epibrassinolide

HBL:

homobrassinolide

POD:

peroxidase

CAT:

catalase

SOD:

superoxide dismutase

References

  • Abdullahi, B.A., Gu X.G., Gan Q.L., and Yang Y.H., 2003. Brassinolide amelioration of aluminum toxicity in mungbean seedling growth. J. Plant Nutrition 26(9): 1725–1734.

    CAS  Google Scholar 

  • Abraham, E., Rigo, G., Szekely, G., Nagy, R., Koncz, C., and Szabados, L., 2003. Light-dependent induction of proline biosynthesis by abscisic acid and salt stress is inhibited by brassinosteroid in Arabidopsis. Plant Mol. Biol., 51(3): 363–372.

    CAS  Google Scholar 

  • Alam, M.M., Hayat, S., Ali, B., Ahmad, A., 2007. Effect of 28-homobrassinolide treatment on nickel toxicity in Brassica juncea. Photosynthetica, 45: 139–142

    Google Scholar 

  • Ali, B., Hayat, S., Hasan, S.A., and Ahmad, A., 2006. Effect of root applied 28-homobrassinolide on the performance of Lycopersicon esculentum. Sci. Hort. 110: 267–273.

    CAS  Google Scholar 

  • Ali, B., Hasan, S.A., Hayat, S., Hayat, Q., Yadav, S., Fariduddin, Q., and Ahmad, A., 2008. A role for brassinosteroids in the amelioration of aluminium stress through antioxidant system in mung bean (Vigna radiata L. Wilczek). Environ. Exp. Bot. 62: 153–159.

    CAS  Google Scholar 

  • Ali, Q., Athar, H.U.R., and Ashraf, M., 2008. Modulation of growth, photosynthetic capacity and water relations in salt stressed wheat plants by exogenously applied 24-epibrassinolide. Plant Growth Regul. 56: 107–116.

    CAS  Google Scholar 

  • Ali, B., Hayat, S., and Ahmad, A., 2007. A 28-Homobrassinolide ameliorates the saline stress in chickpea (Cicer arietinum L.). Environ. Exp. Bot. 59: 217–223.

    CAS  Google Scholar 

  • Almeida, J.M., Fidalgo, F., Confraria, A., Santos, A., Pires, H., and Santos, I., 2005. Effect of hydrogen peroxide on catalase gene expression, isoform activities and levels in leaves of potato sprayed with homobrassinolide and ultrastructural changes in mesophyll cells. Functional Plant Biol. 32: 707–720.

    CAS  Google Scholar 

  • Altoé, J.A., Marinho, C.S., Muniz, R.A., Rodrigues, L.A., and Gomes, M.M.A., 2008. A “Cleopatra” mandarin submitted to mycorrhization and to a brassinosteroid analogue. Acta Sci. Agron. 30(1): 13–17.

    Google Scholar 

  • Amzallag, G.N., 2004. Brassinosteroid: a modulator of the developmental window for salt-adaptation in Sorghum bicolor. Israel J. Plant Sci. 52(1): 1–8.

    CAS  Google Scholar 

  • Amzallag, G.N., and Vaisman, J., 2006. Influence of brassinosteroids on initiation of the root gravitropic response in Pisum sativum seedlings. Biol. Plantarum 50: 283–286.

    CAS  Google Scholar 

  • Anuradha, S., and Rao, S.S.R., 2003. Application of brassinosteroids to rice seeds (Oryza sativa L.) reduced the impact of salt stress on growth, prevented photosynthetic pigment loss and increased nitrate reductase activity. Plant Growth Regul. 40(1): 29–32.

    CAS  Google Scholar 

  • Anuradha, S., and Rao, S.S.R., 2007a. The effect of brassionosteroids on radish (Raphanus sativus L.) seedlings growing under cadmium stress. Plant Soil Environ. 53: 465–472.

    CAS  Google Scholar 

  • Anuradha, S., and Rao, S.S.R., 2007b. Effect of 24-epibrassinolide on the growth and antioxidant enzyme activities in radish seedlings under lead toxicity. Indian J. Plant Physiol, 12: 396–400.

    CAS  Google Scholar 

  • Arora, N., Bhardwaj, R., Sharma, P., and Arora, H. K., 2008. Effects of 28-homobrassinolide on growth, lipid peroxidation and antioxidative enzyme activities in seedlings of Zea mays L. under salinity stress. Acta Physiol. Plantarum 30: 833–839.

    CAS  Google Scholar 

  • Arteca, R. N., and Arteca, J. M., 2008. Effects of brassinosteroid, auxin, and cytokinin on ethylene production in Arabidopsis thaliana plants. J. Exp. Bot. 59: 3019–3026.

    CAS  PubMed  Google Scholar 

  • Aval’baev, A.M., Bezrukova, M.V., and Shakirova, F.M., 2000. Effect of brassinosteroid on the hormonal balance in wheat seedlings. Doklady Biological Sciences 391(3):337–339.

    Google Scholar 

  • Aydin, Y., Talas-Ogras, T., Ipekci-Altas, Z., and Gozukirmizi, N., 2006. Effects of brassinosteroid on cotton regeneration via somatic embryogenesis, Biologia 61: 289–293.

    CAS  Google Scholar 

  • Azpeitia, A., Chan, J.L., Saenz, L., and Oropeza, C., 2003. Effect of 22(S), 23(S)-homobrassinolide on somatic embryogenesis in plumule explants of Cocos nucifera (L.) cultured in vitro. J. Hort. Sci. Biotechnol. 78(5): 591–596.

    CAS  Google Scholar 

  • Bajguz, A., and Asami, T., 2004. Effects of brassinazole, an inhibitor of brassinosteroid biosynthesis, on light- and dark-grown Chlorella vulgaris. Planta 218(5): 869–877.

    CAS  PubMed  Google Scholar 

  • Bajguz, A., and Godlewska-Zykiewlu, B., 2004. Protective role of 20-hydroxyeedysone against lead stress in Chlorella vulgaris cultures. Phytochem. 65(6): 711–720.

    CAS  Google Scholar 

  • Bajguz, A., and Asami, T., 2005. Suppression of Wolffia arrhiza growth by brassinazole, an inhibitor of brassinosteroid biosynthesis and its restoration by endogenous 24-EBL. Phytochem. 66: 1787–1796.

    CAS  Google Scholar 

  • Bao, F., Shen, J., Brady, S.R., Muday, G.K., Asami, T., and Yang, Z., 2004. Brassinosteroids interact with auxin to promote lateral root development in Arabidopsis. Plant Physiol. 134 (4): 1624–1631.

    CAS  PubMed  Google Scholar 

  • Catunda, P.H.A., Marinho, C.S., Gomes, M.M.A., and Carvalho, A.J.C., 2008. Brassinosteroid and substrate in acclimatization of ‘Imperial’ pineapple. Acta Sci. Agron. 30(3): 345–352.

    CAS  Google Scholar 

  • Chang, S.C., Kim, Y.S., Lee, J.Y., Kaufman, P.B., Kirakosyan, A., Yun, H.S., Kim, T.W., Kim, S.Y., Cho, M.H., Lee, J.S., and Kim, S.K., 2004. Brassinolide interacts with auxin and ethylene in the root gravitropic response of maize (Zea mays). Physiol. Plantarum 121(4): 666–673.

    CAS  Google Scholar 

  • Chon, N.M., Nishikawa-Koseki, N., Takeuchi, Y., and Abe, H., 2008. Role of ethylene in abnormal shoot growth induced by high concentration of brassinolide in rice seedlings. J. Pest. Sci. 33: 67–72.

    CAS  Google Scholar 

  • Cortes, P.A., Terrazas, T., Leon, T.C., and Larque-Saavedra, A., 2003. Brassinosteroid effects on the precocity and yield of cladodes of cactus pear (Opuntia ficus-indica (L) Mill.). Sci. Hort. 97(1): 65–73.

    Google Scholar 

  • Çag, S., Goren-Saglam, N., Cingil-Baris, C., and Kaplan, E., 2007. The effect of different concentration of epibrassinolide on chlorophyll, protein and anthocyanin content and peroxidase activity in excised red cabbage (Brassica oleracea L.) cotyledons. Biotech. Biotechnol. Equipment 21: 422–425.

    Google Scholar 

  • Ding, J., Shi, K., Zhou, Y-H, and Yu, J-Q, 2009a. Effects of root and foliar applications of 24-epibrassinolide on fusarium wilt and antioxidant metabolism in cucumber roots. Hort. Sci. 44(5):1340–1349.

    Google Scholar 

  • Ding, J., Shi, K., Zhou, Y-H, and Yu, J-Q, 2009b. Microbial community responses associated with the development of Fusarium oxysporum f.sp.cucumerinum after 24-epibrassinolide applications to shoots and roots in cucumber. Eur. J. Plant Pathol., 124: 141–150.

    CAS  Google Scholar 

  • Fariduddin, Q., Ahmad, A., and Hayat, S., 2003. Photosynthetic response of Vigna radiata to pre-sowing seed treatment with 28-homobrassinolide. Photosynthetica 41(2): 307–310.

    CAS  Google Scholar 

  • Fariduddin, Q., Ahmad, A., and Hayat, S., 2004. Responses of Vigna radiata to foliar application of 28-homobrassinolide and kinetin, Biologia Plantarum 48: 465–468.

    CAS  Google Scholar 

  • Fariduddin, Q., Hasan, S.A., Ali, B., Hayat, S., and Ahmad, A., 2008. Effect of modes of application of 28-homobrassinolide on mung bean. Turkish J. Biol. 32: 17–21.

    CAS  Google Scholar 

  • Fedina, E.O., Karimova, F.G., Tarchevsky, I.A., Toropygin, I.Y., and Khripach, V.A., 2008. Effect of epibrassinolide on tyrosine phosphorylation of the calvin cycle enzymes. Russian J. Plant Physiol. 55: 193–200.

    CAS  Google Scholar 

  • Ferrie, A.M.R., Dirpaul, J., Krishna, P., Krochko, J., and Keller, W.A., 2005. Effects of brassinosteroids on microspore embryogenesis in Brassica species. In Vitro Cell. Develop. Biol. Plant, 41: 742–745.

    CAS  Google Scholar 

  • Fu, F.Q., Mao, W.H., Shi, K., Zhou, Y.H., Asami, T., and Yu, J.Q., 2008. A role of brassinosteroids in early fruit development in cucumber. J. Exp. Bot. 59: 2299–2308.

    CAS  PubMed  Google Scholar 

  • Golovatskaya, I.F., 2008. Interaction of gibberellic acid and 24-epibrassinolide in the regulation of Arabidopsis thaliana seedling scotomorphogenesis. Russian J. Plant Physiol. 55: 663–669.

    CAS  Google Scholar 

  • Gomes, M.M.A., Campostrini, E., Leal, N.R., Viana, A.P., Ferraz, T.M., Siqueira, L.N., Rosa, R.C.C., Núñez-Vázquez, M., and Zullo, M.A.T., 2006. Brassinosteroid analogue effects on the yeild of yellow passion fruit plants. Sci. Hort., 110: 235–240.

    CAS  Google Scholar 

  • Hanano, S., Domagalska, M.A., Nagy, F., and Davis, S.J., 2006. Multiple phytohormones influence distinct parameters of the plant circadian clock. Genes to Cells 11: 1381–92.

    CAS  PubMed  Google Scholar 

  • Hasan, S.A., Hayat, S., Ali, B., and Ahmad, A., 2008. A 28-homobrassinolide protects chickpea (Cicer arietinum) from cadmium toxicity by stimulating antioxidants. Environ. Pollut. 151: 60–66.

    CAS  PubMed  Google Scholar 

  • Haubrick, L.L., Torsethaugen, G., Assmann, S.M., 2006. Effect of brassinolide, alone and in concert with abscisic acid, on control of stomatal aperture and potassium currents of Vicia faba guard cell protoplasts. Physiol. Plant. 128: 134–143.

    CAS  Google Scholar 

  • Hayat, S., and Ahmad, A., 2003a. A 28-Homobrassinolide induced changes favoured germinability of wheat seeds. Bulg. J. Plant Physiol 29(1-2): 55–62.

    Google Scholar 

  • Hayat, S., and Ahmad, A., 2003b. Soaking seeds of Lens culinaris with 28-homobrassinolide increased nitrate reductase activity and grain yield in the field of India. Annals Applied Biol. 143: 121–124.

    CAS  Google Scholar 

  • Hayat, S., Ali, B., Hasan, S.A., Ahmad, A., 2007. Brassinosteroid enhanced the level of antioxidants under cadmium stress in Brassica juncea. Environ. Exp. Bot. 60: 33–41.

    CAS  Google Scholar 

  • Hayat, S., Ali, B., Hasan, S.A., and Ahmad, A., 2007. Effect of 28-Homobrassinolide on salinity-induced changes in Brassica juncea. Turk J. Biol., 31: 141–146.

    CAS  Google Scholar 

  • Howell, W.M., Keller, G.E., Kirkpatrick, J.D., Jenkins, R.L., Hunsinger, R.N., and McLaughlin, E.W., 2007. Effects of the plant steroidal hormone, 24-epibrassinolide, on the mitotic index and growth of onion (Allium cepa) root tips. Gen. Mol. Res. 6: 50–58.

    CAS  Google Scholar 

  • Huang, B., Chu, C.H., Chen, S.L., Juan, H.F., and Chen, Y.M., 2006. A proteomics study of the mung bean epicotyl regulated by brassinosteroids under conditions of chilling stress. Cellul. Mol. Biol. Letters 11: 264–278.

    CAS  Google Scholar 

  • Jager, C.E., Symons, G.M., Ross, J.J., Smith, J.J., and Reid, J.B., 2005. The brassinosteroid growth response in pea is not mediated by changes in gibberellin content. Planta 221: 141–148.

    CAS  PubMed  Google Scholar 

  • Janeczko, A., Koscielniak, J., Pilipowicz, M., Szarek-Lukaszewska, G., and Skoczowski, A., 2005. Protection of winter rape photosystem 2 by 24-epibrassinolide under cadmium stress. Photosynthetica 43: 293–298.

    CAS  Google Scholar 

  • Janeczko, A., Gullner, G., Skoczowski, A., Dubert, F., Barna, B., 2007. Effects of brassinosteroid infiltration prior to cold treatment on ion leakage and pigment contents in rape leaves. Biol. Plant. 51: 355–358.

    CAS  Google Scholar 

  • Jeong, D-H, Lee, S., Kim, S.L., Hwang, I., and An, G., 2007. Regulation of brassinosteroid responses by Phytochrome B in rice. Plant Cell Environ. 30: 590–599.

    CAS  PubMed  Google Scholar 

  • Kagale, S., Divi, U.K., Krochko, J.E., Keller, W.A., and Krishna, P., 2007. Brassinosteroid confers tolerance in Arabidopsis thaliana and Brassica napus to a range of abiotic stresses. Planta 225: 353–364.

    CAS  PubMed  Google Scholar 

  • Kandelinskaya, O.L., Topunov, A.F., Grishchenko, E.R., 2007. Biochemical aspects of growth-stimulating effects of steroid phytohormones on lupine plants. Appl. Biochem. Microbiol. 43: 324–331.

    CAS  Google Scholar 

  • Kang, Y-Y, Guo, S-R, Li, J., and Duan, J-J, 2009. Effect of root-applied 24-epibrassinolide on carbohydrate status and fermentative enzyme activities in cucumber (Cucumis sativus L.) under hypoxia. Plant Growth Regul. 57: 259–269.

    CAS  Google Scholar 

  • Kartal, G., Temei, A., Arican, E., and Gozukirmizi, N., 2009. Effects of brassinosteroids on barley root growth, antioxidant system and cell division. Plant Growth Regul. 58: 261–267.

    CAS  Google Scholar 

  • Kesy, J., Trzaskalska, A., Galoch, E., and Kopcewicz, J., 2003. Inhibitory effect of brassinosteroids on the flowering of the short-day plant Pharbitis nil. Biol. Plant. 47(4): 597–600.

    CAS  Google Scholar 

  • Kim, S-K, Chang, S.C., Lee, E.J., Chung, W-S, Kim, Y-S, Hwang, S., and Lee, J.S., 2000. Involvement of brassinosteroids in the gravitropic response of primary root of maize. Plant Physiol. 123: 997–1004.

    CAS  PubMed  Google Scholar 

  • Kim, T.W., Lee, S.M., Joo, S.H., Yun, H.S., Lee, Y., Kaufman, P.B., Kirakosyan, A., Kim, S.H., Nam, K.H., Lee, J.S., Chang, S.C., Kim, S.K., 2007. Elongation and gravitropic responses of Arabidopsis roots are regulated by brassinolide and IAA. Plant Cell Environ. 30: 679–689.

    CAS  PubMed  Google Scholar 

  • Kim, S.L., Lee, Y., Lee, S.H., Kim, S.H., Han, T.J., and Kim, S.K., 2008. Brassinolide influences the regeneration of adventitious shoots from cultured leaf discs of tobacco. J. Plant Biol. 51: 221–226.

    CAS  Google Scholar 

  • Kitanaga, Y., Jian, C., Hasegawa, M., Yazaki, J., Kishimoto, N., Kikuchi, S., Nakamura, H., Ichikawa, H., Asami, T., Yoshida, S., Yamaguchi, I., and Suzuki, Y., 2006. Sequential regulation of gibberellin, brassinosteroid, and jasmonic acid biosynthesis occurs in rice coleoptiles to control the transcript levels of anti-microbial Thionin genes. Biosci. Biotechnol. Biochem., 70(10): 2410–2419.

    CAS  PubMed  Google Scholar 

  • Kurepin, L.V., Qaderi, M.M., Back, T.G., Reid, D.M., and Pharis, R.P., 2008. A rapid effect of applied brassinolide on abscisic acid concentrations in Brassica napus leaf tissue subjected to short-term heat stress. Plant Growth Regul. 55: 165–167.

    CAS  Google Scholar 

  • Leubner-Metzger, G., 2001. Brassinosteroids and gibberellins promote tobacco seed germination by distinct pathways. Planta 213: 758–763.

    CAS  PubMed  Google Scholar 

  • Li, L., Xu, J., Xu, Z.H., and Xue, H.W., 2005. Brassinosteroids stimulate plant tropisms through modulation of polar auxin transport in Brassica and Arabidopsis. Plant Cell 17: 2738–2753.

    CAS  PubMed  Google Scholar 

  • Li, K.R., Wang, H.H., Han, G., Wang, Q.J., and Fan, J., 2008. Effects of brassinolide on the survival, growth and drought resistance of Robinia pseudoacacia seedlings under water-stress. New Forests 35: 255–266.

    Google Scholar 

  • Lu, Z., Huang, M., Ge, D.P., Yang, Y.H., Cao, X.N., Qin, P., and She, J.M., 2003. Effect of brassinolide on callus growth and regeneration in Spartina patens (Poaceae). Plant Cell Tissue Organ Cult. 73(1): 87–89.

    CAS  Google Scholar 

  • Malabadi, R.B., and Nataraja, K., 2007. A 24-Epibrassinolide induces somatic embryogenesis in Pinus wallichiana A. B. Jacks. Journal Plant Sci. 2: 171–178.

    CAS  Google Scholar 

  • Mazorra, L.M., Núñez, M., Hechavarria, M., Coll, F., and Sánchez-Blanco, M.J., 2002. Influence of brassinosteroids on atioxidant enzymes activity in tomato under different temperatures. Biol. Plant. 45(4): 593–596.

    CAS  Google Scholar 

  • Mazorra, L.M., Núñez, M., Nápoles, M.C., Yoshida, S., Robaina, C., Coll, F., and Asami, T., 2004. Effects of analogs of brassinosteroids on the recovery of growth inhibition by a specific brassinosteroid biosynthesis inhibitor. Plant Growth Regul. 44:183–185.

    CAS  Google Scholar 

  • Miyazawa, Y., Nakajima, N., Abe, T., Sakai, A., Fujioka, S., Kawano, S., Kuroiwa, T., and Yoshida, S., 2003. Activation of cell proliferation by brassinolide application in tobacco BY-2 cells: effects of brassinolide on cell multiplication, cell-cycle-related gene expression, and organellar DNA contents. J. Exp. Bot. 54: 2669–2678.

    CAS  PubMed  Google Scholar 

  • Müssig, C., Shin, G.H., and Altmann, T., 2003. Brassinosteroids promote root growth in Arabidopsis. Plant Physiol. 133(3): 1261–1271.

    PubMed  Google Scholar 

  • Nakashita, H., Yasuda, M., Nitta, T., Asami, T., Fujioka, S., Arai, Y., Sekimata, K., Takatsuto, S., Yamaguchi, I., Yoshida, S., 2003. Brassinosteroid functions in a broad range of disease resistance in tobacco and rice. Plant J. 33(5): 887–898.

    CAS  PubMed  Google Scholar 

  • Nieves, N., Rodríguez, K., Cid, M., Castillo, R., González, J.L., and Núnez, M., 2007. Effect of the brassinosteroid analogs BB-6 and MH-5 on proteins metabolism in sugarcane somatic embryogenesis. Agron. Costarricence, 31(2): 71–77.

    Google Scholar 

  • Núñez, M., Mazzafera, P., Mazorra, L.M., Siqueira, W.J., and Zullo, M.A.T., 2003. Influence of a brassinosteroid analogue on antioxidant enzymes in rice grown in culture medium with NaCl. Biol. Plant. 47(1): 67–70.

    Google Scholar 

  • Núñez, M., Siqueira, W.J., Hernandez, M., Zullo, M.A.T., Robaina, C., and Coll, F., 2004. Effect of spirostane analogues of brassinosteroids on callus formation and plant regeneration in lettuce (Lactuca sativa). Plant Cell Tissue Organ Cult. 78(1): 97–99.

    Google Scholar 

  • Oda, Y., Mimura, T., and Hasezawa, S., 2005. Regulation of secondary cell wall development by cortical microtubules during tracheary element differentiation in Arabidopsis cell suspensions. Plant Physiol. 137: 1027–1036.

    CAS  PubMed  Google Scholar 

  • Ogweno, J.O., Song, X.S., Shi, K., Hu, W.H., Mao, W.H., Zhou, Y.H., Yu, J.Q., and Nogues, S., 2008. Brassinosteroids alleviate heat-induced inhibition of photosynthesis by increasing carboxylation efficiency and enhancing antioxidant systems in Lycopersicon esculentum. J. Plant Growth Regul. 27: 49–57.

    CAS  Google Scholar 

  • Ono, E.O., Nakamura, T., Machado, S.R., and Rodrigues, J.D., 2000. Application of brassinosteroid to Tabebuia alba (Bignoniaceae) plants. Braz. J. Plant Physiol. 12(3):187–194.

    CAS  Google Scholar 

  • Özdemir, F., Bor, M., Demiral, T., Turkan, I., 2004. Effects of 24-epibrassinolide on seed germination, seedling growth, lipid peroxidation, proline content and antioxidative system of rice (Oryza sativa L.) under salinity stress. Plant Growth Regul. 42(3): 203–211.

    Google Scholar 

  • Papadopoulou, E., Grumet, R., 2005. Brassinosteriod-induced femaleness in cucumber and relationship to ethylene production. Hortsci. 40: 1763–1767.

    CAS  Google Scholar 

  • Peng, J., Tang, X., and Feng, H., 2004. Effects of brassinolide on the physiological properties of litchi pericarp (Litchi chinensis cv. Nuomoci). Sci. Hort. 101:407–416.

    CAS  Google Scholar 

  • Pereira-Netto, A.B., Cruz-Silva, C.T.A., Schaefer, S., Ramirez, J.A., and Galagovsky, L.R., 2006a. Brassinosteroid-stimulated branch elongation in the marubakaido apple rootstock. Trees-Structure and Function 20: 286–291.

    CAS  Google Scholar 

  • Pereira-Netto, A.B., Cruz-Silva, C.T.A., Schaefer, S., Ramirez, J.A., and Galagovsky, L.R., 2006b. Brassinosteroid-stimulated branch elongation in the marubakaido apple rootstock. Trees-Structure and Function 20: 286–291.

    CAS  Google Scholar 

  • Pullman, G.S., Zhang, Y., and Phan, B.H., 2003. Brassinolide improves embryogenic tissue initiation in conifers and rice. Plant Cell Rep. 22(2): 96–104.

    CAS  PubMed  Google Scholar 

  • Pullman, G.S., Johnson, S., Van Tassel, S., and Zhang, Y., 2005. Somatic embryogenesis in loblolly pine (Pinus taeda) and Douglas fir (Pseudotsuga menziesii): improving culture initiation and growth with MES pH buffer, biotin, and folic acid. Plant Cell Tissue Organ Cult. 80: 91–103.

    CAS  Google Scholar 

  • Pullman, G., Johnson, S., and Bucalo, K., 2009. Douglas fir embryogenic tissue initiation. Plant Cell Tissue Organ Cult. 96: 75–84.

    Google Scholar 

  • Saglam-Çag, S., 2007. The effects of epibrassinolide on senescence in wheat leaves. Biotecnol. Biotechnol. Equipment 21: 63–65.

    Google Scholar 

  • Saka, H., Fujii, S., Imakawa, A.M., Kato, N., Watanabe, S., Nishizawa, T., and Yonekawa S, 2003. Effect of brassinolide applied at the meiosis and flowering stages on the levels of endogenous plant hormones during grain-filling in rice plant (Oryza sativa L.). Plant Prod. Sci. 6(1): 36–42.

    CAS  Google Scholar 

  • Saygideger, S., and Deniz, F., 2008. Effect of 24-epibrassinolide on biomass, growth and free proline concentration in Spirulina platensis (Cyanophyta) under NaCl stress. Plant Growth Regul. 56: 219–223.

    CAS  Google Scholar 

  • Shahbaz, M., Ashraf, M., and Athar, H.U.R., 2008. Does exogenous application of 24-epibrassinolide ameliorate salt induced growth inhibition in wheat (Triticum aestivum L.)? Plant Growth Regul. 55: 51–64.

    CAS  Google Scholar 

  • Sharma, P., and Bhardwaj, R., 2007. Effects of 24-epibrassinolide on growth and metal uptake in Brassica juncea L. under copper metal stress. Acta Physiol. Plant. 29: 259–263.

    CAS  Google Scholar 

  • Sharma, P., Bhardwaj, R., Arora, N., Arora, H.K., and Kumar, A., 2008. Effects of 28-homobrassinolide on nickel uptake, protein content and antioxidative defence system in Brassica juncea. Biol. Plant. 52: 767–770.

    CAS  Google Scholar 

  • Singh, I., and Shono, M., 2005. Physiological and molecular effects of 24-epibrassinolide, a brassinosteroid on thermotolerance of tomato. Plant Growth Regul. 47: 111–119.

    CAS  Google Scholar 

  • Song, W.J., Zhou, W.J., Jin, Z.L, Cao, D.D., Joel, D.M., Takeuchi, Y., and Yoneyama, K., 2005. Germination response of Orobanche seeds subjected to conditioning temperature, water potential and growth regulator treatments. Weed Res. 45: 467–476.

    Google Scholar 

  • Song, W.J., Zhou, W.J., Jin, Z.L., Zhang, D., Yoneyama, K., Takeuchi, Y., and Joel, D.M., 2006. Growth regulators restore germination of Orobanche seeds that are conditioned under water stress and suboptimal temperature. Aust. J. Agric. Res. 57: 1195–1201.

    CAS  Google Scholar 

  • Symons, G.M., Davies, C., Shavrukov, Y., Dry, I.B., Reid, J.B., and Thomas, M.R., 2006. Grapes on steroids. Brassinosteroids are involved in grape berry ripening. Plant Physiol. 140: 150–158.

    CAS  PubMed  Google Scholar 

  • Tabur, S., and Demir, K., 2009. Cytogenetic response of 24-epibrassinolide on the root meristem cells of barley seeds under salinity. Plant Growth Regul. 58:119–123.

    CAS  Google Scholar 

  • Tanaka, K., Nakamura, Y., Asami, T., Yoshida, S., Matsuo, T., and Okamoto, S., 2003. Physiological roles of brassinosteroids in early growth of Arabidopsis: brassinosteroids have a synergistic relationship with gibberellin as well as auxin in light-grown hypocotyl elongation. J. Plant Growth Regul. 22(3): 259–271.

    CAS  Google Scholar 

  • Upreti, K.K., and Murti, G.S.R., 2004. Effects of brassinosteroids on growth, nodulation, phytohormone content and nitrogenase activity in French bean under water stress. Biol. Plant. 48: 407–411.

    CAS  Google Scholar 

  • Vardhini, B.V., and Rao, S.S.R., 2002. Acceleration of ripening of tomato pericarp discs by brassinosteroids. Phytochem. 16: 843–847.

    Google Scholar 

  • Vardhini, B.V., and Rao, S.S.R., 2003. Amelioration of osmotic stress by brassinosteroids on seed germination and seedling growth of three varieties of sorghum. Plant Growth Regul. 41(1): 25–31.

    CAS  Google Scholar 

  • Whippo, C.W., and Hangarter, R.P., 2005. A brassinosteroid-hypersensitive mutant of BAK1 indicates that a convergence of photomorphogenic and hormonal signalling modulates phototropism. Plant Physiol. 139: 448–457.

    CAS  PubMed  Google Scholar 

  • Xia, X.J., Huang, Y.Y., Wang, L., Huang, L.F., Yu, Y.L., Zhou, Y.H., and Yu, J.Q., 2006. Pesticides-induced depression of photosynthesis was alleviated by 24-epibrassinolide pretreatment in Cucumis sativus L. Pest. Biochem. Physiol. 86: 42–48.

    CAS  Google Scholar 

  • Xia, X-J, Wang, Y-J, Zhou, Y-H, Tao, Y., Mao, W-H, Shi, K., Asami, T., Chen, Z., and Yu, J-Q, 2009. Reactive oxygen species are involved in brassinosteroid-induced stress tolerance in cucumber. Plant Physiol. 150: 801–814.

    CAS  PubMed  Google Scholar 

  • Yang, Y.H., Huang, J., and Ding, J., 2003. Interaction between exogenous brassinolide, IAA and BAP in secondary metabolism of cultured Onosma paniculatum cells. Plant Growth Regul. 39(3): 253–261.

    CAS  Google Scholar 

  • Yu, J.Q., Huang, L.F., Hu, W.H., Zhou, Y.H., Mao, W.H., Ye, S.F., and Nogues, S., 2004. A role for brassinosteroids in the regulation of photosynthesis in Cucumis sativus. J. Exp. Bot. 55(399): 1135–1143.

    CAS  PubMed  Google Scholar 

  • Yun, H.R., Joo, S-H, Park, C.H., Kim, S-K, Chang, S.C., and Kim, S.Y., 2009. Effects of brassinolide and IAA on ethylene production and elongation in maize primary roots. J. Plant Biol. 52: 268–274.

    CAS  Google Scholar 

  • Zhang, Z.S., Ramirez, J., Reboutier, D., Brault, M., Trouverie, J., Pennarun, A.M., Amiar, Z., Biligui, B., Galagovsky, L., and Rona, J.P., 2005. Brassinosteroids regulate plasma membrane anion channels in addition to proton pumps during expansion of Arabidopsis thaliana cells. Plant Cell Physiol. 46: 1494–1504.

    CAS  PubMed  Google Scholar 

  • Zhang, S., Hu, J., Zhang, Y., Xie, X.J., and Knapp, A., 2007. Seed priming with brassinolide improves lucerne (Medicago sativa L.) seed germination and seedling growth in relation to physiological changes under salinity stress. Aust. J. Agric. Res. 58: 811–815.

    CAS  Google Scholar 

  • Zhang, M.C., Zhai, Z.X., Tian, X.L., Duan, L.S., and Li, Z.H., 2008. Brassinolide alleviated the adverse effect of water deficits on photosynthesis and the antioxidant of soybean (Glycine max L.). Plant Growth Regul. 56: 257–264.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. A. Gomes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Gomes, M.M.A. (2011). Physiological effects related to brassinosteroid application in plants. In: Hayat, S., Ahmad, A. (eds) Brassinosteroids: A Class of Plant Hormone. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0189-2_7

Download citation

Publish with us

Policies and ethics