Skip to main content

Brassinosteroids for phytoremediation application

  • Chapter
  • First Online:
Brassinosteroids: A Class of Plant Hormone

Abstract

Phytoremediation is a plant-based family of technologies for remediating and/or containing contamination. It has good public acceptance and is economical, compared to traditional and engineering technologies for soil treatment. Phytohormones have the specific ability to increase and support plant physiology, and are well-known and applied in horticulture, floriculture, fruit farming and other agricultural fields. The main processes of phytoremediation involve plant physiology within the plant and/or its immediate surroundings (rhizosphere); thus it can take advantage of any “assistants” that improve the efficiency of the physiological mechanisms that can make phytoremediation process more efficient. We can call “assisted phytoremediation by plant growth regulators” that phytoremediation aided by phyto-hormone treatment. Such treatment is harmless to the environment, practical and economically viable. Only recently a very few studies have revealed the possibility of applying phytohormones for phytoremediation purposes. Phytohormones in this context should increase plant resistance to stress, increase plant biomass production, increase plant metal uptake, and increase organic degradation. Brassinosteroids could enter into this class of phytohormone for “assisted phytoremediation by plant growth regulators”. This may open a new research field, intriguing experts in both phytoremediation and phytohormones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alkorta, I., and Garbisu, C. 2001. Phytoremediation of organic contaminants in soils. Biores. Technol. 79: 273–276.

    CAS  Google Scholar 

  • Anuradha S., and Rao S.S.R. 2003. Application of brassinosteroids to rice seeds (Oryza sativa L.) reduced the impact of salt stress on growth, prevented photosynthetic pigment loss and increased nitrate reductase activity. Plant Growth Regul. 40: 29–32.

    CAS  Google Scholar 

  • Bajguz A. 2000a. Effects of brassinosteroids on nucleic acids and protein in cultured cells in Chlorella vulgaris. Plant Physiol. Biochem. 38:209–215.

    CAS  Google Scholar 

  • Bajguz A. 2000b. Blockage of heavy metal accumulation in Chlorella vulgaris cells by 24epibrassinolide. Plant Physiol. Biochem. 38:797–801.

    CAS  Google Scholar 

  • Bajguz A. 2002. Brassinosteroids and lead as stimulators of phytochelatins synthesis in Chlorella vulgaris. J. Plant Physiol. 159:321–324.

    CAS  Google Scholar 

  • Bajguz, A., and Hayat, S. 2009. Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiol. Biochem., 47, 1–8.

    CAS  PubMed  Google Scholar 

  • Baker, A.J.M., and Brooks, R.R. 1989. Terrestrial higher plants which hyper accumulate metallic elements–review of their distribution, ecology and phytochemistry. Biorrecovery, 1: 81–126.

    CAS  Google Scholar 

  • Barac, T., Taghavi, T., Borremans, B., Provoost, A., Oeyen, L., et al., 2004. Engineered endophytic bacteria improve phytodegradation of water-soluble, volatile, organic pollutants. Nat. Biotechnol. 22: 583–88.

    CAS  PubMed  Google Scholar 

  • Barbafieri M. 2000. The importance of nickel phytoavailable chemical species characterization in soil for phytoremediation applicability. Int. J. Phytorem. 2: 105–115.

    CAS  Google Scholar 

  • Barbafieri M., Lubrano L. and Petruzzelli G. 1996. Characterization of pollution at heavy metal contaminated sites: a proposal. Annali di Chimica 86: 585–594.

    CAS  Google Scholar 

  • Bilkisu A.A., Xiao-Gang G, Qing-Lei G, and Yong-Hua Y. 2003. Brassinolide amelioration of aluminium toxicity in mungbean seedling growth. J. Plant Nutr. 26:1725–1734

    Google Scholar 

  • Braun P., and Wild A. 1984. The influence of brassinosteroid on growth and parameters of photosynthesis of wheat and mustard plants. J. Plant Physiol. 116:189–196

    CAS  Google Scholar 

  • Briggs, G.G., Bromilow R.H., and Evans A.A. 1982. Relationship between lipophilicity and root uptake and translocation of non-ionized chemicals by barley. Pestic. Sci. 13: 495–504.

    CAS  Google Scholar 

  • Bromilow, R.H., and Chamberlain, K. 1995. Principles governing uptake and transport of chemicals. In: Plant contamination: Modelling and Simulation of Organic Chemical Processes, Trapp S., McFarlane, J.C. (eds.), Boca Raton: Lewis, pp. 37–68.

    Google Scholar 

  • Brown, S.L., Henry, C.L., Chaney, R., Compton H., and DeVolder, P.M. 2003. Using municipal biosolids in combination with other residuals to restore metal contaminated mining areas. Plant Soil 249: 203–15.

    CAS  Google Scholar 

  • Burken J.G., Shanks, J.V., and Thompson, P.L. 2000. Phytoremediation and plant metabolism of explosives and nitroaromatic compounds. In: Biodegradation of Nitroaromatic Compounds and Explosives. Spain, J.C., Hughes, J.B. and Knackmuss, H.J., eds. CRC Press, Boca-Raton, Florida, pp. 239–275.

    Google Scholar 

  • Castro, S., Davis, L.C., and Erikson, L.E. 2001. Plant enhanced remediation of glycol-based aircraft deicing fluids. Pract. Periodical Hazard., Toxic, Radioact. Waste Manag. 5:141–152.

    CAS  Google Scholar 

  • Chiou, C.T. 2002. Contaminant Partition and Bioconcentration. In: Partition and Adsorption of Organic Contaminants in Environmental Systems, Chiou, C.T. (Ed.), John Wiley & Sons, Inc. New Jersey, pp. 86–105.

    Google Scholar 

  • Clemens, S. 2006. Toxic metal accumulation, response to exposure and mechanism of tolerance in plants. Biochimie 88: 1707–1719.

    CAS  PubMed  Google Scholar 

  • Clemens, S. 2001. Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212: 475–486.

    CAS  PubMed  Google Scholar 

  • Clemens S., Plamgren M.G., Kramer, U., 2002. A long way ahead; understanding and engineering plant metal accumulation. Trends Plant Sci. 7: 309–315.

    CAS  PubMed  Google Scholar 

  • Clemente, Walker, J.D., Roig, A., and Bernal, P.M. 2003. Heavy metal bioavailability in a soil affected by mineral sulphides contamination following the mine spillage at Aznalcollar (Spain). Biodegradation, 14: 199.205.

    Google Scholar 

  • Clouse, S.D., Zurek, D.M., McMorris, T.C., and Baker, M.E. 1992. Effect of brassinolide on gene expression in elongating soybean epicotyls. Plant Physiol. 100:1377–1383

    CAS  PubMed  Google Scholar 

  • Cunningham, S.D., and Berti, W.R. 1993. Remediation of contaminated soils with green plants: an overview. In Vitro Cell Dev. Biol. 29: 207–212.

    Google Scholar 

  • Dhaubhadel, S., Browning, K.S., Gallie, D.R., and Krishna, P. 2002. Brassinosteroid functions to protect the translational machinery and heat-shock protein synthesis following thermal stress. Plant J. 29:681–691.

    CAS  PubMed  Google Scholar 

  • Dhillon KS, Dhillon SK. 1997 Distribution of seleniferous soils in north-west India and associated toxicity problems in the soil–plant–animal–human continuum. Land Contam. Reclam. 5: 313–22.

    Google Scholar 

  • Dickinson, N.M., Baker, A.J.M., Doronila, A., Laidlaw, S., and Reeves, R.D. 2009. Phytoremediation of inorganics: realism or synergies. Int. J. Phytorem. 11: 97–114.

    CAS  Google Scholar 

  • Di Gregorio S., Barbafieri M., Lampis S., Sanangelantoni A.M., Tassi E., and Vallini G. 2006. Combined application of Triton X-100 and Sinorrhizobium sp. Pb002 inoculum for the improvement of lead phytoextraction by Brassica juncea in EDTA amended soil. Chemosphere 63: 293–299.

    CAS  PubMed  Google Scholar 

  • Divi, U.K. and Krishna, P. 2009a. Brassinosteroids confer stress tolerance. In: Plant Stress Biology. Hirt, H., ed., Wiley–VCH Verlag GmbH & Co. KGaA, Weinheim pp.119–135.

    Google Scholar 

  • Divi, U.K. and Krishna, P. 2009b. Brassinosteroids: a biotechnological target for enhancing crop yield and stress tolerance. New Biotechnology 26: 131–136.

    CAS  PubMed  Google Scholar 

  • Dushenkov, S., and Kapulnik, Y. 2000. Phytofiltration of metals. In: Phytoremediation of toxic metals – Using plants to clean-up the environment. Ed. Raskin, I, Ensley, B.D. Wiley, New York, pp. 89-106.

    Google Scholar 

  • Dushenkov, S., Vasudev, D., Kapulnik, Y., Gleba, D., Fleisher, D., Ting, K.C., et al. 1997. Removal of uranium form water using terrestrial plants. Environ. Sci. Technol. 31: 3468–3474.

    CAS  Google Scholar 

  • E.P.A. 2009. Technical/Regulatory Guidance – Phytotechnology Technical and Regulatory Guidance and Decision Trees, revised. http://www.itrcweb.org/Documents/PHYTO-3.pdf Assessed in February 2010.

  • Fariduddin, Q., Yusuf, M., Hayat, S., and Ahmad, A. 2009. Effect of 28-homobrassinolide on antioxidant capacity and photosynthesis in Brassica juncea plants exposed to different levels of copper. Environ. Exp. Bot. 66, 418–424.

    CAS  Google Scholar 

  • Fletcher, J.S., Hedge, R.S. 1995. Release of phenols by perennial plant roots and their potential importance in bioremediation. Chemosphere 31: 3000–3016.

    Google Scholar 

  • Franck-Duchenne M., Wang Y., Tahar B.S., Beachy N. 1998. In vitro stem elongation of sweet pepper in media containing 24-epibrassinolide. Plant Cell Tissue and Organ Cult 53: 79–84.

    CAS  Google Scholar 

  • Fuentes, H.D., Khoo, C.S., Pe, T., Muir, S., Khan, A.G. 2000. Phytoremediation of a contaminated mine site using plant growth regulators to increase heavy metal uptake. In: Proceedings of the 5th International Conference on Clean Technologies for the Mining Industry. 1: 749-756.

    Google Scholar 

  • Gardea-Torresdey, J.L., de la Rosa, G., and Peralta-Videa, J.R. 2004. Use of phytofiltration technologies in the removal of heavy metals: A review. Pure and Appl. Chem. 76: 801–813.

    CAS  Google Scholar 

  • Hall, J.L. 2002. Cellular mechanisms for heavy metal detoxification and tolerance. J. Exp. Bot. 53: 1–11.

    CAS  PubMed  Google Scholar 

  • Hanikenne, M., Talke, I.N., Haydon, M.J., Lanz, C., Nolte, A., Motte, P., Kroymann, J., Weigel, D., and Kramer U. 2008. Evolution of metal hyperaccumulation required cis- regulatory changes and triplication of HMA4. Nature 453: 391–395.

    CAS  PubMed  Google Scholar 

  • Harms, H., Boken, M., Kolb, M., and Bock, C. 2003. Transformation of organic contaminants by different plant systems. In: Phytoremediation: Transformation and Control of Contaminants, ed. McCutcheon, S.C., Schnoor, J.L. Wiley, New York, pp. 285–316.

    Google Scholar 

  • Hartley-Whitaker, J., Ainsworth, G., Vooijs, R., Ten Bookum, W., Schat, H., Meharg, A.A. 2001. Phytochelatins are involved in differential arsenate tolerance in Holcus lanatus. Plant Physiol. 126: 299–306.

    CAS  PubMed  Google Scholar 

  • Hatzios K.K., and Burgos N. 2004. Metabolism-based herbicide resistance: regulation by safeners. Weed Sci. 52: 454–467.

    CAS  Google Scholar 

  • Hayat, S., Ali, B., Hasan, S.A., and Ahmad, A. 2007. Brassinosteroid enhanced the level of antioxidants under cadmium stress in Brassica juncea. Environ. Exp. Bot. 60, 33–41.

    CAS  Google Scholar 

  • Hayat S., S. Hasan A., Hayat Q., and Ahmad A. 2009. Brassinosteroids protect Lycopersicon esculentum from cadmium toxicity applied as shotgun approach. Protoplasma DOI 10.1007/s00709-009-0075-2.

    Google Scholar 

  • Hutchinson, S.L., Schwab, A.P., and Banks, M.K. 2003. Biodegradation of petroleum hydrocarbons in the rhizosphere. In: Phytoremediation: Transformation and Control of Contaminants, ed. McCutcheon, S.C., Schnoor, J.L. Wiley, New York, pp. 355–386.

    Google Scholar 

  • Ikekawa N., and Zao Y.J. 1991. Application of 24-epibrassinolide in agriculture. Brassinosteroids: chemistry, bioactivity, and applications. In ACS Symposium Series (Vol. 474) (Cutler, H.G., Tokota, T., Sadam, G., eds) pp. 280-291, American Chemical Society.

    Google Scholar 

  • Irving, H.R., Gehring, C.A., and Parish, R.W. 1992. Changes in cytosolic pH and calcium of guard cells precede stomatal movements. Plant Biology, Proc. Natl. Acad. Sci. USA 89, 1790–1794.

    CAS  Google Scholar 

  • Janeczko, A., Koscielniak, J., Pilipowicz, M., Szarek-Lukaszewska, G., and Skoczowski, A. 2005. Protection of winter rape photosystem 2 by 24-epibrassinolide under cadmium stress. Photosynthetica 43: 293–298.

    CAS  Google Scholar 

  • Jentschke, G., Godbold, D.L. 2000. Metal toxicity and ectomycorrhizas. Physiol. Plant. 109, 107–116.

    CAS  Google Scholar 

  • Kagale S., Divi U.K., Krochko L.E., Keller W.A., and Krishna P. 2007. Brassinosteroids confer tolerance in Arabidospsis thaliana and Brassica napus to a range of abiotic stress. Planta 225: 353–364.

    CAS  PubMed  Google Scholar 

  • Kagale, S., Uday, K., Divi Joan, E., Krochko, A. 2007. Brassinosteroid confers tolerance in Arabidopsis thaliana and Brassica napus to a range of abiotic stresses. Planta, 225: 353–364.

    CAS  PubMed  Google Scholar 

  • Kasamo K. 2003. Regulation of plasma membrane H+-ATPase activity by the membrane environment. J. Plant Res. 16:517–523

    Google Scholar 

  • Khan, A.S., and Chaudhry, N.Y. 2006. GA3 improves flower yield in some cucurbits treated with lead and mercury. Afr. J. Biotechnol. 5 (2), 149–153.

    CAS  Google Scholar 

  • Khripach, V.A., Zhabinskii, V.N., and de Groot, A.E. 1999. Brassinosteroids: A new class of plant hormones. Academic, San Diego, p 456.

    Google Scholar 

  • Khripach, V.A., Zhabinskii V.N., and de Groot, A.E. 2000. Twenty Years of Brassinosteroids: Steroidal Plant Hormones Warrant Better Crops for the XXI Century. Ann. Bot. 86: 441–447.

    CAS  Google Scholar 

  • Keeling S.M., Stewart R.B., Anderson C.W.N., and Robinson B.H. 2003. Nickel and cobalt phytoextraction by the hyperaccumulator Berkheya coddii: implications for polymetallic phytomining and phytoremediation. Int. J. Phytorem. 5: 235–244.

    CAS  Google Scholar 

  • Kim, D., Lahner, B., Persans, M.W., Baek, D., Yun, D.J., and Salt, D.E. 2004. The plant CDF family member TgMTP1 from Ni/Zn hyperaccumulator Thlaspi goesingense acts to enhance efflux of Zn at the plasma membrane when expressed in Saccharomyces cerevisiae. Plant J., 39: 237–251.

    CAS  PubMed  Google Scholar 

  • Krishna P. 2003. Brassinosteroid mediated stress response. J Plant Growth Regul. 22: 289–297.

    CAS  PubMed  Google Scholar 

  • LaCoste, C., Robinson B.H., and Brooks, R.R. 2001. Thallium uptake by vegetables: Its significance for human health, phytoremediation and phytomining. J. Plant Nutr. 24: 1205–1216.

    CAS  Google Scholar 

  • Lee, S., Kim, Y-Y., An, G., 2007. Rice P1B-type heavy metal ATPase, OsHMA9, is a metal efflux protein. Plant Physiol. 145: 831–842.

    CAS  PubMed  Google Scholar 

  • Leigh, M.B., Prouzova, P., Mackova, M., Macek, T., Nagel, D., and Fletcher, J.S. 2006. Polychlorinated Biphenyl (PCB)-Degrading Bacteria Associated with Trees in a PCB-Contaminated Site. Appl. Environ. Microbiol., 72: 2331–2342.

    CAS  PubMed  Google Scholar 

  • Letham, D.S., Goodwin, P.B, and Higgins, T.J.V. 1978. Phytohormones and related compounds: a comprehensive treatise. In: Letham, D.S., Goodwin, P.B, Higgins, T.J.V. (Eds.). Vol 2. Phytohormones and the Development of Higher Plants. Elsevier, North – Holland Biomedical Press, Amsterdam.

    Google Scholar 

  • Li, X.D., and Thornton, I. 2001. Chemical partitioning of trace and major elements in soil contaminated by mining and smelting activities. Appl. Geochem., 16: 1693–1706.

    CAS  Google Scholar 

  • Lindsay, W., and Norwell, W. A. 1978. Development of DTPA soil test for Zn, Fe, Mn, Cu. Soil Sci. Soc. Am. J. 42: 421–428.

    CAS  Google Scholar 

  • Liphadzi, M.S., Kirkham, M.B., and Paulsen, G.M. 2006. Auxin-enhanced root growth for phytoremediation of sewage-sludge amended soil. Environ. Technol. 27, 695–704.

    CAS  PubMed  Google Scholar 

  • Lopez, M.L., Peralta-Videa, J.R., Benitez, T., and Gardea-Torresdey, J.L. 2005. Enhancement of lead uptake by alfalfa (Medicago sativa) using EDTA and a plant growth promoter. Chemosphere 61, 525–598.

    Google Scholar 

  • Ma, J.F., Ryan P.R., and Delhaize, E. 2001. Aluminium tolerance in plants and the complexing role of organic acids. Trends Plant Sci. 6: 273–278.

    CAS  PubMed  Google Scholar 

  • Ma, X., and Burken, J.G. 2003. TCE diffusion to the atmosphere in phytoremediation applications. Environ. Sci. Technol. 37: 2534–2539.

    CAS  PubMed  Google Scholar 

  • McCutcheon, S.C:, Medina, V.F., and Larson, S.L. 2003. Proof of phytoremediation for explosives in water and soil. In: Phytoremediation: Transformation and Control of Contaminants, ed. McCutcheon, S:C:, Schnoor, J.L. Wiley, New York, pp. 429-80.

    Google Scholar 

  • McGrath P.S., and Zhao F.J. 2003. Phytoextraction of metals and metalloids from contaminated soils. Curr. Opin. Biotechnol. 14: 277–282.

    CAS  PubMed  Google Scholar 

  • Meharg, A.A., and Macnair, M.R. 1992. Genetic correlation between arsenate tolerance and the rate of influx of arsenate and phosphate in Holcus lanatus. Heredity. 69: 336–341.

    CAS  Google Scholar 

  • Memon, A.D., and Schroder, P. 2009. Implication of metal accumulation mechanisms to phytoremediation. Environ. Sci. Pollut. Res. 16: 162–175.

    CAS  Google Scholar 

  • Mendez, M.O., and Maier, R.M. 2008. Phytostabilization of mining tailings in arid and semiarid environments–an emerging remediation technology. Environ. Health Persp. 116: 278–283.

    CAS  Google Scholar 

  • Mkandawire, M., and Dudel, E.G., 2005. Accumulation of arsenic in Lemna gibba L. (duckweed) in mailing waters of two abandoned uranium mining sites in Saxony, Germany. Sci. Tot. Environ., 336: 81–89.

    CAS  Google Scholar 

  • Muhammad S., and Muhammad A.L., 2007. Influence of exogenous application of Brassinosteroid on growth and mineral Nutrients of wheat (Triticum aestivum L.) Under saline conditions. Pak. J. Bot., 39: 513–522.

    Google Scholar 

  • Mussig, C., Fisher, S., and Altman, T. 2002. Brassinosteroids-regulated gene expression. Plant Physiol. 130: 1319–1334.

    Google Scholar 

  • Newman L.A., Wang, X.P., Muiznieks, I.A., Ekuan, G., Ruszaj, M., Cortellucci, R., et al. 1999. Remediation of trichloreoethylene in an artificial aquifer with tree: a controlled field study. Environ. Sci. Technol. 33: 2257–2265.

    CAS  Google Scholar 

  • Nriagu, J.O. 1979. Global inventory of natural and anthropogenic emissions of trace metals to the atmosphere. Nature 279: 409–11.

    CAS  PubMed  Google Scholar 

  • Ouzounidou, G., and Ilias, I. 2005. Hormone-induced protection of sunflower photosynthetic apparatus against copper toxicity. Biol. Plant. 49: 223–228.

    CAS  Google Scholar 

  • Ozdemir, F., Bor, M., Demiral, T. and Turkan, I. 2004. Effects of 24-epibrassinolide on seed germination, seedling growth, lipid peroxidation, proline content and antioxidative system of rice (Oryza sativa L.) under salinity stress. Plant Growth Regul. 42: 203–211

    Google Scholar 

  • Paterson, S., Mackay, D., Tam, D., Shiu, W.Y., 1990. Uptake of organic chemicals by plants: a review processes, correlations and models. Chemosphere 21: 297–331.

    CAS  Google Scholar 

  • Pedron F., Petruzzelli G., Barbafieri M., Tassi E., 2009. Strategies to use phytoextraction in very acidic soil contaminated by heavy metals. Chemosphere, 75: 808–814.

    CAS  PubMed  Google Scholar 

  • Pharmavati, M., Billington, T., and Gehring, C.A. 1998. Stomatal guard cell responses to kinetin and natriuretic peptides are cGMP dependent. Cell. Mol. Life Sci. 54, 272–276.

    Google Scholar 

  • Pilon-Smits, E., 2005. Phytoremediation. Ann. Rev. Plant Biol. 56: 15–39.

    CAS  Google Scholar 

  • Plumlee, G.S., Longsdon, M.J., 1999. The environmental geochemistry of mineral deposits. Society of Economic Geologists, Inc., Michigan, USA.

    Google Scholar 

  • Pospisilova, J., 2003. Participation of phytohormones in the stomatal regulation of gas exchange during water stress. Biol. Plant. 46, 491–506.

    CAS  Google Scholar 

  • Pospisilova, J., Synkova, H., Rulcova, J., 2000. Cytokinins and water stress. Biol. Plant. 43, 321–328.

    CAS  Google Scholar 

  • Prasad, M.N.V., 2004. Phytoremediation of metals and radionuclides in the environment: the case for natural hyperaccumulators, metal transporters, soil-amending chelators and transgenic plants. In: Heavy Metal Stress in Plantsfrom biomolecules to ecosystems, Prasad, M.N.V. ed., Springer-Verlag, Berlin Heidelberg, pp. 345–391.

    Google Scholar 

  • Rauret G. 1998. Extraction procedures for the determination of heavy metals in contaminated soil and sediment. Talanta 46:449–55.

    CAS  PubMed  Google Scholar 

  • Robinson B.H., Fernández J.E., Madejón P., Marañón T., Murillo J.M., Green S.R., and Clothier B.E. 2003. Phytoextraction: an assessment of biogeochemical and economic viability. Plant and Soil 249: 117–125.

    CAS  Google Scholar 

  • Rock, S.A. 2003. Vegetative covers for waste containment. In. Scheper T. (Ed.). Advances in Biochemical Engineering/Biotechnology. Spring-Verlag, Berlin Heidelberg. 78, 157-170.

    Google Scholar 

  • Rogers, E.E., Eide, D. J., and Guerinot, M.L. 2000. Altered selectivity in an Arabidopsis metal transporter. Proc. Natl. Acad. Sci. USA 97: 12356–60.

    CAS  PubMed  Google Scholar 

  • Ryan, J.A., Bell, R.M., Davinson, J.M., and O’Conor, G.A. 1988. Plant uptake of non-ionic organic chemicals from soils. Chemosphere 17: 2299–2323.

    CAS  Google Scholar 

  • Salt, D.E., Kato, N., Kramer, U., Smith, R.D., and Raskin, I. 2000. The role of root exudates in nickel hyperaccumulation and tolerance and non-accumulator species of Thlaspi. In: Phytoremediation of contaminated soil and water. Terry,N. and Banuelos, G. eds., CRC Press LLC, pp. 189-200.

    Google Scholar 

  • Salt, D.E., Smith, R.D., and Raskin, I. 1998. Phytoremediation. Ann. Rev. Plant Physiol. Plant Molec. Biol. 49: 643–668.

    CAS  Google Scholar 

  • Sandremann, H. 1994. High plant metabolism of xenobiotics: the ‘green liver’ concept. Pharmacogentics 4: 225–241

    Google Scholar 

  • Sasse J. 2002. Physiological actions of brassinosteroids: an update. J. Plant Growth Regul. 22: 276–288.

    Google Scholar 

  • Sayed, S.A. 1997. Effect of cadmium and kinetin on kranspiration rate, stomatal opening and leaf relative water content in safflower plants. Journal of Islamic Academy of Sciences 10, 73–80.

    Google Scholar 

  • Schnoor, J.L., Licht, L.A., McCutcheon, S.C., Wolfe, N.L., and Carreira, L.H. 1995. Phytoremediation of organic and nutrient contaminants. Environ. Sci. Technol. 29: 318–323.

    Google Scholar 

  • Schröder P., and Collins C.J. 2002. Conjugating enzymes involved in xenobiotic metabolism of organic xenobiotics in plants, Int. J. Phytorem. 4: 1–15.

    Google Scholar 

  • Schwitzguebel, JP, Vanek, T., 2003. Some fundamental advances for xenobiotic chemicals. In: Phytoremediation: Transformation and Control of Contaminants, ed. McCutcheon, S.C., Schnoor, J.L. Wiley, New York, pp. 123–157.

    Google Scholar 

  • Shang, T.Q., Newman, L.A., Gordon, M.P. 2003. Fate of tricholorethylene in terrestrial plants. In: Phytoremediation: Transformation and Control of Contaminants, ed. McCutcheon, S.C., Schnoor, J.L. Wiley, New York, pp. 529–60.

    Google Scholar 

  • Sharma, P., and Bhardwaj, R. 2007. Effects of 24-epibrassinolide on growth and metal uptake in Brassica juncea L. under copper metal stress. Acta Physiol Plant 29: 259–263.

    CAS  Google Scholar 

  • Sondergaard TE, Schulz A, and Palmgren MG. 2004. Energization of transport processes in plants. Roles of the plasma membrane H+-ATPase. Plant Physiol 136: 2475–2482

    CAS  PubMed  Google Scholar 

  • Steben and McCourt 2001. A role for brassinosteroids in germination in Arabidopsis. Plant Physiol. 125: 763–769

    Google Scholar 

  • Subramanian, M., Shanks, J.V., 2003. Role of plants in the transformation of explosives. In Phytoremediation: Transformation and Control of Contaminants, ed. McCutcheon, S.C., Schnoor, J.L. Wiley, New York, pp. 389–407.

    Google Scholar 

  • Sze, H., Li, X., Palmgren, M.G. 1999. Energization of plant cell membranes by H+-pumping ATPases: regulation and biosynthesis. Plant Cell 11: 677–689

    CAS  PubMed  Google Scholar 

  • Takatsuto S., Kamuro, Y., Watanabe, T. 1996. Synthesis and plant growth promoting effects of brassinosteroid compound TS303. Proc. Plant Growth Regul. Soc. Amer. 23: 15–20.

    Google Scholar 

  • Tassi E., Barbafieri M., Cervelli S., Petruzzelli G., Pedron F., and Szymura, I., 2004a. Phytoremediation test in PAH contaminated soil. Agrochimica, vol XLVIII: 73-76.

    Google Scholar 

  • Tassi, E., Pedron, F., Barbafieri M., and Petruzzelli, G. 2004b. Phosphate-assisted phytoremediation in As-contaminated soil. Eng. Life Sci. 4: 341–346.

    CAS  Google Scholar 

  • Tassi, E., Pouget J., Petruzzelli G., and Barbafieri M. 2008. The effects of exogenous plant growth regulators in the phytoextraction of heavy metals. Chemosphere, 71: 66–73.

    CAS  PubMed  Google Scholar 

  • Trapp, S. 2000. Modelling uptake into roots and subsequent translocation of neutral and ionisable organic compounds. Pest. Manag. Sci. 56: 767–778.

    CAS  Google Scholar 

  • Tropp, E., Scheunert, I., Attar, A., and Korte, F. 1986. Factors affecting the uptake of 14C-labeled organic chemicals by plants from soil. Ecotoxicol. Environ. Safe, 11: 219–228.

    Google Scholar 

  • Verbruggen N., Hermans C., and Schat H. 2009. Molecular mechanism of metal hyperaccumlation in plants. New Phytologist 181: 759–776.

    CAS  Google Scholar 

  • Volynets A.P., Pschenichanye L.A., Khripach V.A. 1997. The nature of protective action of 24-epibrassinolide on barley plants. Plant Growth Regul. Soc. Am. 24: 133–137

    Google Scholar 

  • Vose, J.M., Harvey, G.J., Elliott, K.J., and Clinton, B.D. 2003. Measuring and modelling tree and stand level transpiration. In: McCutcheon S.C. and Schnoor J.L. (Eds.) Phytoremediation – Transformation and Control of Contaminants. Willey-Interscience Inc., New Jersey.

    Google Scholar 

  • Weber, W.J., and Huang, Q. 2003. Inclusion of persistent organic pollutants in humification processes: direct chemical incorporation of phenathrene via oxidative coupling. Environ. Sci. Technol. 37: 4221–4227.

    CAS  PubMed  Google Scholar 

  • Werner, T., Motyka, V., Strnad, M., and Schmülling, T. 2001. Regulation of plant growth by cytokinin. Plant Biology 98, 10487–10492.

    CAS  Google Scholar 

  • Xia, X.J., Huang, Y.Y., Wang, L., Huang, L.F., Yu, Y.L., Zhou, Y.H., and Yu, J.Q. 2006. Pesticides induced depression of photosynthesis was alleviated by 24-epibrassinolide pretreatment in Cucumis sativus L. Pest Biochem. Physiol. 86, 42–48.

    CAS  Google Scholar 

  • Xia, X.J., Zhang Y., Wu X.J., Wang T.J., Zhou, Y. H., Shi W., Yu, Y. L., and Yu, J.Q. 2009a. Brassinosteroids promote metabolism of pesticides in cucumber. J. Agric. Food Chem. 57: 8406–8413.

    CAS  PubMed  Google Scholar 

  • Xia, X.J., Wang, Y.J., Zhou, Y.H., Tao, Y., Mao, W.H., Shi, K., Asami, T., Chen, Z., and Yu, J.Q. 2009b. Reactive oxygen species are involved in brassinosteroids-induced stress tolerance in Cucumis sativus. Plant Physiol., 150, 801–814.

    CAS  PubMed  Google Scholar 

  • Xingmao Richter, A.R., Albers, S., and Burken, J.G., 2004. Phytoremediation of MBTE with hybrid poplar trees. Int. J. Phytorem. 6:157–167.

    Google Scholar 

  • Yoon, J., Cao, X., Zhou, Q., and Ma, L.Q. 2006. Accumulation of Pb, Cu and Zn in native plants growing on a contaminated Florida site. Sci. Tot. Environ. 368: 456–464.

    CAS  Google Scholar 

  • Zhang Z., Ramirez J., Reboutier D., Brault M., Trouverie J., Pennarun AM., Amiar Z., Biligui B., Galagovsky L., and Rona JP. 2005. Brassinosteroids regulate plasma membrane anion channels in addition to proton-pumps during expansion of Arabidopsis thaliana cells. Plant Cell Physiol 46:1494–1504.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Barbafieri, M., Tassi, E. (2011). Brassinosteroids for phytoremediation application. In: Hayat, S., Ahmad, A. (eds) Brassinosteroids: A Class of Plant Hormone. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0189-2_16

Download citation

Publish with us

Policies and ethics