Skip to main content

The significance of ethanol as a hormone solvent in experiments on the physiological activity of brassinosteroids

  • Chapter
  • First Online:
Brassinosteroids: A Class of Plant Hormone
  • 2625 Accesses

Abstract

Many compounds acting as regulators in plants are substances insoluble in water. The examples here are steroid compounds of the brassinosteroid group. In biological experiments, where they are exogenously supplied to plants, brassinosteroids are first dissolved in organic solvents such as alcohols or DMSO. These experiments should include appropriate controls, as many research results indicate that alcohols, e.g., methanol or ethanol, are not free of effect on the metabolism in plant cells. In this chapter, examples of experiments on brassinosteroid activity in plants show the significance of using two kinds of controls (absolute ones and ones with a hormone solvent) for the interpretation of results concerning the permeability of cell membranes in oilseed rape leaves during low-temperature stress, changes in protein content in wheat grains, etc. Attention is also paid to the combined effect of exogenous brassinosteroids and ethanol (which is present in trace quantities in aqueous solutions used to treat plants) on brassinosteroid management inside plants. The physiological effects caused by brassinosteroids are thought to depend on many factors (i.e. environmental conditions of plant growth). This chapter shows how the use of different controls may lead to problems in interpretation, and be another factor contributing to the nonreproducibility and/or ambiguity of the results obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bhattacharya, S., Bhattacharya, N.C., and Bhatnagar V.B. 1985. Effect of ethanol, methanol and acetone on rooting etiolated cuttings of Vigna radiata in presence of sucrose and auxin. Ann. Bot., 55: 143–145.

    CAS  Google Scholar 

  • Cerana, R., Bonetti, A., Marrè, M.T., Romani, G., Lado, P., and Marrè, E. 1983. Effects of a brassinosteroid on growth and electrogenic proton extrusion in Azuki bean epicotyls. Physiol. Plant., 59: 23–27.

    Article  CAS  Google Scholar 

  • Chamel, A. 1972. Effect of dimethyl sulfoxide on penetration and migration of 59Fe applied to maize leaves. Physiol. Plant., 26: 170–174.

    Article  CAS  Google Scholar 

  • Chang, L.A., Hammett, L.K., and Pharr, D.M. 1983. Carbon dioxide effects on ethanol production, pyruvate decarboxylase, and alcohol dehydrogenase activities in anaerobic sweet potato roots. Plant Physiol., 71: 59–62.

    Article  CAS  PubMed  Google Scholar 

  • Claassens, M.M.J., Verhees, J., van der Plas, L.H.W., van der Krol, A.R., and Vreugdenhil, D. 2005. Ethanol breaks dormancy of the potato tuber apical bud. J. Exp. Bot., 56: 2515–2525.

    Article  CAS  PubMed  Google Scholar 

  • Confraria, A., Desikan, R., and Neill, S. 2007. Brassinosteroids protect plants against heat stress. Comp. Biochem. Physiol. A. Mol. Integr. Physiol., 146: S279 (Suppl. 1).

    Article  Google Scholar 

  • Cossins, E.A., and Beevers, H. 1963. Ethanol metabolism in plant tissues. Plant Physiol., 38: 375–380.

    Article  CAS  PubMed  Google Scholar 

  • Cossins, E.A., and Turner, E.R. 1963. The metabolism of ethanol in germinating pea seedlings. J. Exp. Bot., 14: 290–298.

    Article  CAS  Google Scholar 

  • Dahse, I., Sack, H., Bernstein, M., Petzold, U., Müller, E., Vorbrodt, H.M., and Günter, A. 1990. Effects of (22S,23S)-homobrassinolide and related compounds on membrane potential and transport of Egeria leaf cells. Plant Physiol., 93: 1268–1271.

    Article  CAS  PubMed  Google Scholar 

  • De Grauwe, L., Vandenbussche, F., Tietz, O., Palme, K., and Van Der Straeten D. 2005. Auxin, ethylene and brassinosteroids: tripartite control of growth in the Arabidopsis hypocotyls. Plant Cell Physiol., 46: 827–836.

    Article  CAS  PubMed  Google Scholar 

  • Estes, G.O., Mack, H.J., and Willis, D.L. 1970. Influence of dimethyl sulfoxide (DMSO) on nutrient uptake by potatoes and bush beans. Agron. J., 62: 461–463.

    Article  CAS  Google Scholar 

  • Fall, R., and Benson, A.A. 1996. Leaf methanol—the simplest natural product from plants. Trends Plant Sci., 1: 296–301.

    Google Scholar 

  • Harris, D., Pathan, A.K., Gothkar, P., Joshi, A., Chivasa, W., and Nyamudeza, P. 2001. On-farm seed priming: using participatory methods to revive and refine a key technology. Agricult. Systems, 69: 151–164.

    Article  Google Scholar 

  • Hemming, D.J.B., Criddle, R.S., and Hansen, L.D. 1995. Effects of methanol on plant respiration. J. Plant Physiol., 146: 193–198.

    CAS  Google Scholar 

  • Hüve, K., Christ, M.M., Kleist, E., Uerlings, R., Niinemets, Ü., Walter, A., and Wildt, J. 2007. Simultaneous growth and emission measurements demonstrate an interactive control of methanol release by leaf expansion and stomata. J. Exp. Bot., 58: 1783–1793.

    Article  PubMed  Google Scholar 

  • Igaue, I., and Yagi, M. 1982. Alcohol dehydrogenase from cultured rice cells. Plant Cell Physiol., 23: 213–225.

    CAS  Google Scholar 

  • Janeczko, A., Biesaga-Kościelniak, J., and Dziurka, M. 2009. 24-epibrassinolide modifies seed composition in soybean, oilseed rape and wheat. Seed Sci. Technol. 37: 625–637.

    Google Scholar 

  • Janeczko, A., Biesaga-Kościelniak, J., Oklešťková, J., Filek, M., Dziurka, M., Szarek-Łukaszewska, G., and Kościelniak, J. 2010. Role of 24-epibrassinolide in wheat production. physiological effects and uptake. J. Agron. Crop Sci., In press. doi:10.1111/j.1439-037X.2009.00413.x

    Google Scholar 

  • Janeczko, A., Gullner, G., Skoczowski, A., Dubert, F., and Barna, B. 2007. Effects of brassinosteroid infiltration prior to cold treatment on ion leakage and pigment contents in rape leaves. Biol. Plant. 51: 355–358.

    Article  CAS  Google Scholar 

  • Junker, B.H., Chu, C., Sonnewald, U., Willmitzer, L., and Fernie, A.R. 2003. In plants the alc gene expression system responds more rapidly following induction with acetaldehyde than with ethanol. FEBS Lett., 535: 136–140.

    Article  CAS  PubMed  Google Scholar 

  • Kelly, M.O., and Saltveit, M.E. Jr. 1988. Effect of endogenously synthesized and exogenously applied ethanol on tomato fruit ripening. Plant Physiol., 88:143–147.

    Article  CAS  PubMed  Google Scholar 

  • Kimmerer, T.W., Kozlowski, T.T 1982. Ethylene, ethane, acetaldehyde, and ethanol production by plants under stress. Plant Physiol., 69: 840–847.

    Article  CAS  PubMed  Google Scholar 

  • Kimmerer, T.W., Macdonald, R.C. 1987. Acetaldehyde and ethanol biosynthesis in leaves of plants. Plant Physiol., 84: 1204–1209.

    Article  CAS  PubMed  Google Scholar 

  • Kotzabasis, K., Hatziathanasiou, A., Bengoa-Ruigomez, M. V., Kentouri, M., and Divanach, P. 1999. Methanol as alternative carbon source for quicker efficient production of the microalgae Chlorella minutissima: Role of the concentration and frequence of administration. J. Biotechnol., 70: 357–362.

    Article  CAS  Google Scholar 

  • Kumar, B., Gangwar, M.S., and Rathore, V.S. 1976. Effect of dimethyl sulfoxide (DMSO) on zinc availability (L-value), growth and metabolic activities of rice plants. Plant Soil, 45: 235–246.

    Article  CAS  Google Scholar 

  • Leblová, S., Zimáková, I., Sofrová, D., and Barthová, J. 1969. Occurrence of ethanol in pea plants in the course of growth under normal and anaerobic conditions. Biol. Plant., 11: 417–423.

    Article  Google Scholar 

  • Lim, S.H., Chang, S.C., Lee, J.S. Kim S.K., and Kim, S.Y. 2002. Brassinosteroids affect ethylene production in the primary roots of maize (Zea mays L.). J. Plant Biol., 45: 148–153.

    Article  CAS  Google Scholar 

  • Mer, C.L. 1958. Growth-promoting effect of ethanol on oat seedlings. Nature, 182: 1812–1813.

    Article  CAS  Google Scholar 

  • Middleton, W., Jarvis, B.C., and Booth, A. 1978. The effects of ethanol on rooting and carbohydrate metabolism in stem cuttings of Phaseolus Aureus Roxb. New Phytol., 81: 279–285.

    Article  CAS  Google Scholar 

  • Nam, K.H., and Li J. 2004. The Arabidopsis transthyretin-like protein is a potential substrate of RASSINOSTEROID-INSENSITIVE 1. The Plant Cell, 16: 2406–2417.

    Article  CAS  PubMed  Google Scholar 

  • Nonomura, A.M., and Benson, A.A. 1992. The path of carbon in photosynthesis: improved crop yields with methanol. Proc. Natl. Acad. Sci. USA, 89: 9794–9798.

    Article  CAS  PubMed  Google Scholar 

  • Obendorf, R.L., Koch, J.L., Gorecki, R.J., Amable, R.A., and Aveni, M.T. 1990. Methanol accumulation in maturing seeds. J. Exp. Bot., 41: 489–495.

    Article  CAS  Google Scholar 

  • Perata, P., and Alpi, A. 1991. Ethanol metabolism in suspension cultured carrot cells. Physiol. Plant., 82: 103–108.

    Article  CAS  Google Scholar 

  • Pociecha, E., Janeczko, A. 2008. Antioxidant enzymes activity and development of barley after high temperature stress – impact of 24-epibrassinolide. Zesz. Probl. Post. Nauk Rol. 524: 83–93. (in Polish with English abstract and figures description)

    Google Scholar 

  • Podd, L.A., and Van Staden, J. 1998. The role of ethanol and acetaldehyde in flower senescence and fruit ripening – A review. Plant Growth Regul., 26:183–189.

    Article  CAS  Google Scholar 

  • Schlagnhaufer, C., Arteca, R.N., and Yopp, J.H. 1984. Evidence that brassinosteroid stimulates auxin-induced ethylene synthesis in mung bean hypocotyls between S-adenosylmethionine and 1-aminocyclopropane-1-carboxylic acid. Physiol. Plant., 61: 555–558.

    Article  CAS  Google Scholar 

  • Saltveit, M.E., Jr. 1989. Effect of alcohols and their interaction with ethylene on the ripening of epidermal pericarp discs of tomato fruit. Plant Physiol., 90: 167–174.

    Article  CAS  PubMed  Google Scholar 

  • Srivastava, L.M. 2002. Plant growth and development. Hormones and the environment Oxford: Academic Press.

    Google Scholar 

  • Zhang, S., Cai, Z., and Wang X. 2009. The primary signaling outputs of brassinosteroids are regulated by abscisic acid signalling. Proc. Nat. Acad. Sci. USA, 106: 4543–4548.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Janeczko, A. (2011). The significance of ethanol as a hormone solvent in experiments on the physiological activity of brassinosteroids. In: Hayat, S., Ahmad, A. (eds) Brassinosteroids: A Class of Plant Hormone. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0189-2_13

Download citation

Publish with us

Policies and ethics