Skip to main content

Arbuscular Mycorrhizal Fungi and Rhizobium to Control Plant Fungal Diseases

  • Chapter
  • First Online:
Alternative Farming Systems, Biotechnology, Drought Stress and Ecological Fertilisation

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 6))

Abstract

Soil microorganisms can be used to decrease the input of fertilizers, pesticides and other chemicals. Among soil microorganisms, arbuscular mycorrhizal (AM) fungi and Rhizobium spp. can promote plant growth and control plant fungal diseases. However these microorganisms are not yet used in commercial biocontrol products. Integration of arbuscular mycorrhizal fungus with Rhizobium sp. thus appears to be a promising approach for sustainable agriculture. Arbuscular mycorrhizal fungi and root-nodule bacterium Rhizobium are two root symbionts. Arbuscular mycorrhizal fungi increases soil nutrients and water absorption, while root-nodule bacteria fix atmospheric nitrogen and produce antibiotics and phytoalexins. These microbes modify the quality and abundance of rhizosphere microflora and alter overall microbial activity of the rhizosphere. They induce changes in the host root exudation pattern. A procedure for successful development of these microorganisms is required by selection and screening of efficient isolates. Knowledge of culture systems that are adapted to their establishment and multiplication is needed. Arbuscular mycorrhizal fungi provide specific niches for bacteria. Arbuscular mycorrhizal bacteria improve nutrient acquisition in plants. Arbuscular mycorrhizal bacteria may contribute to ability of arbuscular mycorrhizal fungi to inhibit pathogens, acquire mineral nutrients and modify plant root growth. Combined use of these microorganisms is more beneficial than their use alone. These symbionts also interact with other beneficial microorganisms synergistically and can be exploited for sustainable agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Fattah GM, Shabana YM (2002) Efficacy of the arbuscular mycorrhizal fungus Glomus clarum in protection of cowpea plants against root-rot pathogen Rhizoctonia solani. J Plant Dis Protec 109:207–215

    Google Scholar 

  • Adholeya A (2003) Commercial production of AMF through industrial mode and its large scale application, in: Proceeding of the 4th international conference Mycorrhizae (ICOM4), Montreal, Canada

    Google Scholar 

  • Agrios GN (2005) Plant pathology, 5th edn. Elsevier-Academic Press, San Diego, CA, p 922

    Google Scholar 

  • Aguin O, Mansilla JP, Vilarino A, Sainz MJ (2004) Effects of mycorrhizal inoculation on root morphology and nursery production of three grapevine rootstocks. Am J Enol Vitic 55:108–111

    Google Scholar 

  • Akhtar MS, Siddiqui ZA (2006) Effects of phosphate solubilizing microorganisms on the growth and root-rot disease complex of chickpea. Mikol Fitopatol 40:246–254

    CAS  Google Scholar 

  • Akhtar MS, Shakeel U, Siddiqui ZA (2010) Biocontrol of Fusarium wilt by Bacillus pumilus, Pseudomonas alcaligenes, and Rhizobium sp. on lentil. Turk J Biol 32:1–7

    Google Scholar 

  • Akhtar MS, Siddiqui ZA (2007a) Effects of Glomus fasciculatum and Rhizobium sp. on the growth and root-rot disease complex of chickpea. Arch Phytopathol Plant Protec 40:37–43

    Google Scholar 

  • Akhtar MS, Siddiqui ZA (2007b) Biocontrol of a chickpea root-rot disease complex with Glomus intraradices, Pseudomonas putida and Paenibacillus polymyxa. Austra Plant Path 36:175–180

    Google Scholar 

  • Akhtar MS, Siddiqui ZA (2008a) Biocontrol of a root-rot disease complex of chickpea by Glomus intraradices, Rhizobium sp. and Pseudomonas straita. Crop Protec 27:410–417

    Google Scholar 

  • Akhtar MS, Siddiqui ZA (2008b) Glomus intraradices, Pseudomonas alcaligenes, Bacillus pumilus as effective biocontrol agents for the root-rot disease complex of chickpea (Cicer arietinum L.). J Gen Plant Pathol 74:53–60

    Google Scholar 

  • Akhtar MS, Siddiqui ZA (2008c) Arbuscular mycorrhizal fungi as potential bioprotectants against plant pathogens. In: Siddiqui ZA, Akhtar MS, Futai K (eds) Mycorrhizae: sustainable agriculture and forestry. Springer, Dordrecht, The Netherlands, pp 61–98

    Google Scholar 

  • Akkopru A, Demir S (2005) Biocontrol of Fusarium wilt in tomato caused by Fusarium oxysporum f. sp. lycopersici by AMF Glomus intraradices and some rhizobacteria. J Phytopathol 153:544–550

    Google Scholar 

  • Albrecht C, Geurts R, Bisseling T (1999) Legume nodulation and mycorrhizae formation; two extremes in host specificity meet. EMBO J 18:281–288

    CAS  PubMed  Google Scholar 

  • Allen DN, Allen EK (1947) A survey of nodulation among leguminous plants. Proc Soil Sci Soc Am 12:203–218

    Google Scholar 

  • Al-Momany A, Al-Raddad A (1988) Effect of vesicular-arbuscular mycorrhizae on Fusarium wilt of tomato and pepper. Alexandria J Agri Res 33:249–261

    Google Scholar 

  • Arfaoui A, El Hadrami A, Mabrouk Y, Sifi B, Boudabous A, El Hadrami I, Daafy F, Cherif M (2007) Treatment of chickpea with Rhizobium isolates enhances the expression of phenylpropanoid defense-related genes in response to infection by Fusarium oxysporum f. sp. ciceris. Plant Physiol Biochem 45:470–479

    CAS  PubMed  Google Scholar 

  • Arfaoui A, Sifi B, Boudabous A, El Hadrami I, Cherif M (2006) Identification of Rhizobium isolates possessing antagonistic activity against Fusarium oxysporum f. sp. ciceris, the causal agent of Fusarium wilt of chickpea. J Plant Pathol 88:67–75

    CAS  Google Scholar 

  • Arfaoui A, Sifi B, El Hassni M, El Hadrami I, Boudabous A, Cherif M (2005) Biochemical analysis of chickpea protection against Fusarium wilt afforded by two Rhizobium isolates. Plant Pathol J 4:35–42

    Google Scholar 

  • Arihawa J, Karasawa T (2000) Effect of previous crops on arbuscular mycorrhizal formation and growth of succeeding maize. Soil Sci Plant Nutr 46:43–51

    Google Scholar 

  • Artursson V, Finlay RD, Jansson JK (2006) Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environ Microbiol 8:1–10

    CAS  PubMed  Google Scholar 

  • Avis TJ, Gravel V, Antoun H, Tweddell RJ (2008) Multifaceted beneficial effects of rhizosphere microorganisms on plant health and productivity. Soil Biol Biochem 40:1733–1740

    CAS  Google Scholar 

  • Aysan E, Demir S (2009) Using arbuscular mycorrhizal fungi and Rhizobium leguminosarum biovar phaseoli against Sclerotinia sclerotiorum (Lib.) de bary in the common bean (Phaseolus vulgaris L.). Plant Pathol J 8:74–78

    Google Scholar 

  • Azcon-Aguilar C, Bago B (1994) Physiological characteristics of host plant promoting an undistributed functioning of the mycorrhizal symbiosis. In: Gianinazzi S, Schuepp H (eds) Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems. Birkhauser, Basel, pp 47–60

    Google Scholar 

  • Azcon-Aguilar C, Barea JM (1996) Arbuscular mycorrhizas and biological control of soil borne plant pathogens-an overview of the mechanisms involved. Mycorrhiza 6:457–464

    Google Scholar 

  • Bagyaraj DJ (1992) Mycorrhizal associations in plants. In: Bagyaraj DJ, Mangunath A (eds) Manual of mycorrhiza technology. University of Agricultural Sciences, Banglore, India

    Google Scholar 

  • Balestrini R, Romera C, Puigdomenech P, Bonfonte P (1994) Location of a cell-wall hydroxyproline-rich glycoprotein, cellulose and β-1, 3 glucans in apical and differentiated regions of maize mycorrhizal roots. Planta 195:201–209

    CAS  Google Scholar 

  • Bansal M, Chamola BP, Sarwar N, Mukerji KG (2000) Mycorrhizospher: interaction between rhizosphere microflora and VAM fungi. In: Mukerji KG, Chamola BP, Singh J (eds) Mycorrrhizal biology. Kluwer Academic/Plenum Publishers, New York, pp 143–152

    Google Scholar 

  • Bardin SD, Huang HC, Pinto J, Amundsen EJ, Erickson RS (2004) Biological control of pythium damping-off of pea and sugar beet by Rhizobium leguminosarum bv. Viceae. Can J Bot 82:291–296

    Google Scholar 

  • Barea JM, Azcon R, Azcon-Aguilar C (2002) Mycorrhizosphere interactions to improve plant fitness and soil quality. Antonie Van Leeuwen 81:343–351

    CAS  Google Scholar 

  • Barea JM, Pozo MJ, Azcon R, Azcon-Aguilar C (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56:1761–1778

    CAS  PubMed  Google Scholar 

  • Bartsev A, Kobayashi H, Broughton WJ (2004) Rhizobial signals convert pathogens to symbionts at the legume interface. In: Gillings M, Holmes A (eds) Plant microbiology. Garland Science/BIOS Scientific Publishers, Abingdon, pp 19–31

    Google Scholar 

  • Becker WN (1976) Quantification of onion vesicular-arbuscular mycorrhizae and their resistance to Pyrenochaeta terrestris. Ph.D., dissertataion, University of Illinois, Urbana

    Google Scholar 

  • Benhamou N, Fortin JA, Hamel C, St-Arnould M, Shatilla A (1994) Resistance responses of mycorrhizal Ri T-DNA-transformed carrot roots to infection by Fusarium oxysporum f. sp. chrysanthemi. Phytopathology 84:958–968

    CAS  Google Scholar 

  • Berta G, Fusconi A, Trotta A (1993) VA mycorrhizal infection and the morphology and function of root systems. Environ Exp Bot 33:159–173

    Google Scholar 

  • Berta G, Sampo S, Gamalero E, Musasa N, Lemanceau P (2005) Suppression of rhizoctonia root-rot of tomato by Glomus mosseae BEG12 and Pseudomonas fluorescens A6RI is associated with their effect on the pathogen growth and on the root morphogenesis. Eur J Plant Pathol 111:279–288

    Google Scholar 

  • Bhagawati B, Goswami BK, Singh S (2000) Management of disease complex of tomato caused by Meloidogyne incognita and Fusarium oxysporum f. sp. lycopersici through bioagent. Indian J Nematol 30:16–22

    Google Scholar 

  • Bharadwaj DP, Lundquist P-O, Alstrom S (2008a) Arbuscular mycorrhizal fungal spore-associated bacteria affect mycorrhizal colonization, plant growth and potato pathogens. Soil Biol Biochem 40:2494–2501

    CAS  Google Scholar 

  • Bharadwaj DP, Lundquist P-O, Persson P, Alstrom S (2008b) Evidence for specificity of cultivable bacteria associated with arbuscular mycorrhizal fungal spores. FEMS Microbiol Ecol 65:310–322

    CAS  PubMed  Google Scholar 

  • Boby VU, Bagyaraj DJ (2003) Biological control of root-rot of Coleus forskohlii Briq. using microbial inoculatnts. World J Microbiol Biotechnol 19:175–180

    CAS  Google Scholar 

  • Boddu J, Svabek C, Sekhon R, Gevens A, Nicholson RL, Jones AD, Pedersen JF, Gustine DL, Chopra S (2004) Expression of a putative flavonoid 30-hydroxylase in sorghum mesocotyls synthesizing 3-deoxyanthocyanidin phytoalexins. Physiol Mol Plant Pathol 65:101–113

    CAS  Google Scholar 

  • Bodker L, Kjoller R, Rosendahl S (1998) Effect of phosphate and arbuscular mycorrhizal fungus Glomus intraradices on disease severity of root rot of peas (Pisum sativum) caused by Aphanomyces euteiches. Mycorrhiza 8:169–174

    CAS  Google Scholar 

  • Bonfonte-Fasolo P, Spanu P (1992) Pathogenic and endomycorrhizal associations. In: Norris JR, Read DJ, Verma AK (eds) Methods and microbiology: techniques for the study of mycorrhiza, vol 24. Academic, London, pp 142–167

    Google Scholar 

  • Brachmann A (2006) Plant-fungal symbiosis en gros and en detail. New Phytol 171:242–246

    PubMed  Google Scholar 

  • Breil BT, Borneman J, Triplett EW (1996) A newly discovered gene, tfuA, involved in the production of ribosomally synthesized peptide antibiotic trifolitoxin. J Bacteriol 178:4150–4156

    CAS  PubMed  Google Scholar 

  • Brundrett M, Bougher N, Dell B, Grove T, Malajczuk N (1996) Working with mycorrhizas in forestry and agriculture, Canberra, ACIAR Monograph No. 32: 374 p

    Google Scholar 

  • Cameron GC (1986) Interactions between two vesicular-arbuscular mycorrhizal fungi, the soybean cyst nematode, and phosphorus fertility on two soybean cultivars. M.S. thesis, University of Georgia, Athens

    Google Scholar 

  • Caron M, Fortin JA, Richard C (1985) Influence of substrate on the interaction of Glomus intraradices and Fusarium oxysporum f. sp. radicis-lycopersici on tomatoes. Plant Soil 87:233–239

    Google Scholar 

  • Caron M, Fortin JA, Richard C (1986a) Effect of phosphorus concentration and Glomus intraradices on Fusarium crown and root-rot of tomatoes. Phytopathology 76:942–946

    CAS  Google Scholar 

  • Caron M, Fortin JA, Richard C (1986b) Effect of preinfection of the soil by a vesicular-arbuscular mycorrhizal fungus Glomus intraradices on Fusarium crown and root-rot of tomatoes. Phytoprotec 67:15–19

    Google Scholar 

  • Caron M, Fortin JA, Richard C (1986c) Effect of Glomus intraradices on the infection by Fusarium oxysporum f. sp. radicis-lycopersici in tomatoes over a 12-week period. Can J Bot 64:552–556

    Google Scholar 

  • Chabot S, Becard G, Piche Y (1992) Life cycle of Glomus intraradices in root organ culture. Mycologia 84:315–321

    Google Scholar 

  • Chakaraborty U, Chakaraborty BN (1989) Interaction of Rhizobium leguminosarum and Fusarium solani f. sp. pisi on pea affecting disease development and phytoalexin production. Can J Bot 67:1698–1702

    Google Scholar 

  • Chakaraborty U, Purkayastha RP (1984) Role of rhizobitoxin in protecting soybean roots from Macrophomina phaseolina infection. Can J Microbiol 30:285–289

    Google Scholar 

  • Chandanie WA, Kubota M, Hyakumachi M (2006) Interactions between plant growth promoting fungi and arbuscular mycorrhizal fungus Glomus mosseae and induction of systemic resistance to anthracnose disease in cucumber. Plant Soil 286:209–217

    CAS  Google Scholar 

  • Chandanie WA, Kubota M, Hyakumachi M (2009) Interactions between the arbuscular mycorrhizal fungus Glomus mosseae and plant growth-promoting fungi and their significance for enhancing plant growth and suppressing damping-off of cucumber (Cucumis sativus L.). Appl Soil Ecol 41:336–341

    Google Scholar 

  • Clark RB, Zeto SK (2000) Mineral acquisition by arbuscular mycorrhizal plants. J Plant Nutr 23:867–902

    CAS  Google Scholar 

  • Cook RJ, Baker KF (1982) The nature and practice of biological control of plant pathogens. APS Press, St. Paul, MN

    Google Scholar 

  • Cordier C, Gianinazzi S, Gianinazzi-Pearson V (1996) Colonisation patterns of root tissues by Phytophthora nicotianae var parasitica related to reduced disease in mycorrhizal tomato. Plant Soil 185:223–232

    CAS  Google Scholar 

  • Curl EA, Truelove B (1986) The rhizosphere. Springer, New York, p 288

    Google Scholar 

  • Dalpe Y. (2004) Arbuscular mycorrhiza inoculum to support sustainable cropping systems, http://www.plantmanagementnetwork.org/pub/cm/review/2004/amfungi/

  • Dar GH, Zargar MY, Beigh GM (1997) Biocontrol of Fusarium root-rot in the common bean (Phaseolus vulgaris L.) by using symbiotic Glomus mosseae and Rhizobium leguminosarum. Microb Ecol 34:74–80

    Google Scholar 

  • Datnoff LE, Nemec S, Pernezny K (1995) Biological control of Fusarium crown and root-rot of tomato in Florida using Trichoderma harzianum and Glomus intraradices. Biocontrol 5:427–431

    Google Scholar 

  • Davies RM, Menge JA (1980) Influence of Glomus fasciculatus and soil phosphorus on Phytophthora root-rot of citrus. Phytopathology 70:447–452

    Google Scholar 

  • Davis RM (1980) Influence of Glomus fasciculatus on Thielaviopsis basicola root rot of citrus. Phytopathology 70:447–452

    CAS  Google Scholar 

  • Declerck S, Risede JM, Rufyikiri G, Delvaux B (2002) Effects of arbuscular mycorrhizal fungi on the severity of root rot of bananas caused by Cylindrocladium spathiphylli. Plant Pathol 51:109–115

    Google Scholar 

  • Dehne HW (1982) Interactions between vesicular-arbuscular mycorrhizal fungi and plant pathogens. Phytopathology 72:1115–1119

    Google Scholar 

  • Dehne HW, Schönbeck F, Baltruschat H (1978) Untersuchungen zum einfluss der endotrophen Mycorrhiza auf Pflanzenkrankheiten: 3. Chitinase-aktivitat und ornithinzyklus (The influence of endotrophic mycorrhiza on plant diseases: 3 chitinase-activity and Ornithine cycle). J Plant Dis Protec 85:666–678

    CAS  Google Scholar 

  • Demir S, Akkopru A (2007) Using arbuscular mycorrhizal fungi (AMF) for biocntrol of soil borne fungal pathogens. In: Chincholkar SB, Mukerji KG (eds) Biological control of plant diseases. Howarth Press, USA, pp 17–37

    Google Scholar 

  • Deshwal VK, Dubbey RC, Maheshwari DK (2003) Isolation of plant growth-promoting strains of Bradyrhizobium (Arachis) sp. with biocontrol potential against Macrophomina phaseolina causing charcoal rot of peanut. Curr Sci 84:443–448

    Google Scholar 

  • Devi TP, Goswami BK (1992) Effect of VA-mycorrhiza on the disease incidence due to Macrophomina phaseolina and Meloidogyne incognita on cowpea. Ann Agric Res 13:253–256

    Google Scholar 

  • Dickson S, Smith SE (2001) Cross walls in arbuscular trunk hyhpae form after loss of metabolic activity. New Phytol 151:735–742

    Google Scholar 

  • Dixon RA, Harrison MJ, Lamb CJ (1994) Early events in the activation of plant defence responses. Annu Rev Phytopathol 32:479–501

    CAS  Google Scholar 

  • Dixon RA, Lamb CJ (1990) Molecular communication in interactions between plants and microbial pathogens. Annu Rev Physiol Plant Mol Biol 41:367–399

    Google Scholar 

  • Doran JW, Linn DM (1994) Microbial ecology of conservation management systems. In: Hatfield JL, Stewart BA (eds) Soil biology: effects on soil quality advances in soil science. Lewis Publishers, Boca Raton, FL, pp 1–27

    Google Scholar 

  • Douds DD Jr (2002) Increased spore production by Glomus intraradices in a split-plate monoxenic culture system by repeated harvest, gel replacement and re-supply of glucose to the mycorrhiza. Mycorrhiza 12:163–167

    CAS  PubMed  Google Scholar 

  • Douds DD, Galvez L, Frank-Snyder M, Reider C, Dinkwater LE (1997) Effect of compost addition and crop rotation point upon VAM fungi. Agric Ecosyst Environ 65:257–266

    Google Scholar 

  • Douds DD, Schenck NC (1990) Relationship of colonization and sporulation by VA mycorrhizal fungi to plant nutrient and carbohydrate contents. New Phytol 116:621–627

    CAS  Google Scholar 

  • Drapeau R, Fortin JA, Cagnon C (1973) Antifungal activity of Rhizobium. Can J Bot 51:681–682

    Google Scholar 

  • Dumas-Gaudot E, Furlan V, Grenier J, Asselin A (1992a) Chitinase, chitosanase and β-1, 3-glucanase activities in allium and pisum roots colonized by Glomus species. Plant Sci 84:17–24

    CAS  Google Scholar 

  • Dumas-Gaudot E, Furlan V, Grenier J, Asselin A (1992b) New acidic chitinase isoforms induced in tobacco roots by vesicular-arbuscular mycorrhizal fungi. Mycorrhiza 1:133–136

    CAS  Google Scholar 

  • Ellis C, Karafyllidis I, Turner JG (2002) Constitutive activation of jasmonate signaling in an arabidopsis mutant correlates with enhanced resistant to Eryiphe cichoracearum, Pseudomonas syringae and Myzus persicae. Mol Plant-Microbe Int 15:1025–1030

    CAS  Google Scholar 

  • Elsayed Abdalla M, Abdel-Fattah GM (2000) Influence of endomycorrhizal fungus Glomus mosseae on the development of peanut pod rot disease in Egypt. Mycorrhiza 10:29–35

    Google Scholar 

  • Eom AH, Hartnett DC, Wilson GWT (2000) Host plant species effects on arbuscular mycorrhizal fungal communities in tallgrass prairie. Oecologia 122:435–444

    Google Scholar 

  • Essalmani H, Lahlou H (2003) Bioprotection mechanisms of the lentil plant by Rhizobium leguminosarum against Fusarium oxysporum f. sp. lentis. CR Biol 326:1163–1173

    Google Scholar 

  • Estevez de Jensen C, Percich JA, Graham PH (2002) Integrated management strategies of bean root rot with Bacillus subtilis and Rhizobium in Minnesota. Field Crops Res 74:107–115

    Google Scholar 

  • Farzana A, Gaffer A, Ali F (1991) Effect of seed treatment with biological antagonists on rhizosphere mycoflora and root infecting fungi of soybean. Pak J Bot 23:183–188

    Google Scholar 

  • Fortin JA, Becard G, Declerck S, Dalpe Y, St-Arnaud M, Coughlan AP, Piche Y (2002) Arbuscular mycorrhiza on root-organ cultures: a review. Can J Bot 80:1–20

    CAS  Google Scholar 

  • Ganesan S, Kuppusamy RG, Sekar R (2007) Integrated management of stem rot disease (Sclerotium rolfsii) of groundnut (Arachis hypogaea L.) using Rhizobium and Trichoderma harzianum (ITCC - 4572). Turk J Biol 31:103–108

    Google Scholar 

  • Garbaye J (1994) Helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phytol 128:197–210

    Google Scholar 

  • Gianinazzi-Pearson V, Dumas-Gaudot E, Gollotte A, Tahiri-Al-aoui A, Gianinazzi S (1996) Cellular and molecular defense-related root responses to invasion by arbuscular mycorrhizal fungi. New Phytol 133:45–57

    Google Scholar 

  • Gianinazzi-Pearson V, Gollotte A, Dumas-Gaudot E, Franken P, Gianinazzi S (1994) Gene expression and molecular modifications associated with plant responses to infection by arbuscular mycorrhizal fungi. In: Daniels M, Downic JA, Osbourn AE (eds) Advances in molecular genetics of plant microbes interactions. Kluwer, Dordrecht, pp 179–186

    Google Scholar 

  • Gianinazzi-Pearson V, Gollotte A, Lherminier J, Tisserant B, Franken P, Dumas-Gaudot E, Lemoine MC, van Tuinen D, Gianinazzi S (1995) Cellular and molecular approaches in the characterization of symbiotic events in functional arbuscular associations. Can J Bot 73:S526–S532

    CAS  Google Scholar 

  • Graham JH, Egel DS (1988) Phytophthora root rot development on mycorrhizal and phosphorous fertilized non-mycorrhizal sweet orange seedlings. Plant Dis 72:611–614

    Google Scholar 

  • Graham JH, Menge JA (1982) Influence of vesicular-arbuscular mycorrhizal fungi and soil phosporus on take-all disease of wheat. Phytopathology 72:95–96

    Google Scholar 

  • Guenoune D, Galili S, Phillips DA, Volpin H, Chet I, Okon Y, Kapulnik Y (2001) The defense response elicited by the pathogen Rhizoctonia solani is suppressed by colonization of the AM fungus Glomus intraradices. Plant Sci 160:925–932

    CAS  PubMed  Google Scholar 

  • Hagerman AE, Robbins CT (1987) Implications of soluble tanninprotein complexes for tannin analysis and plant defence mechanisms. J Chem Ecol 13:1243–1259

    CAS  Google Scholar 

  • Hao Z, Christie P, Qin L, Wang C, Li X (2005) Control of Fusarium wilt of cucumber seedlings by inoculation with an arbuscular mycorrhical fungus. J Plant Nutr 28:1961–1974

    CAS  Google Scholar 

  • Haque SE, Ghaffar A (1993) Use of rhizobia in the control of root-rot disease of sunflower, okra, soybean and mungbean. J Phytopathol 138:157–163

    Google Scholar 

  • Harborne JB (1988) Introduction to ecological biochemistry, 3rd edn. Academic, London

    Google Scholar 

  • Harley JL, Smith SE (1983) Mycorrhizal symbiosis. Academic Press, New York

    Google Scholar 

  • Harrier LA, Watson CA (2004) The potential role of arbuscular mycorrhizal (AM) fungi in the bioprotection of plants against soil-borne pathogens in organic and/or other sustainable farming systems. Pest Manage Sci 60:149–157

    CAS  Google Scholar 

  • Hetrick BAD, Wilson GWT, Todd TC (1996) Mycorrhizal response to wheat cultivars, relationship to phosphorus. Can J Bot 74:19–25

    CAS  Google Scholar 

  • Hirsch AM, Lum MR, Downie JA (2001) What makes the rhizobia-legume symbiosis so special? Plant Physiol 127:1484–1492

    CAS  PubMed  Google Scholar 

  • Hossain I, Khan MAI, Podder AK (1999) Seed treatment with Rhizobium in controlling Fusarium oxysporum and Sclerotium rolfsii for biomass and seed production of lentil (Lens culinaris M.). Bangladesh J Environ Sci 5:61–64

    Google Scholar 

  • Huang HC, Erickson RS (2007) Effect of seed treatment with Rhizobium leguminosarum on pythium damping-off, seedling height, root nodulation, root biomass, shoot biomass, and seed yield of pea and lentil. J Phytopathol 155:31–37

    Google Scholar 

  • Hussain S, Ghaffar A, Aslam M (1990) Biological control of Macrophomina phaseolina charcoal rot of sunflower and mungbean. J Phytopathol 130:157–160

    Google Scholar 

  • Hwang SF, Chang KF, Chakravarty P (1992) Effect of vesicular-arbuscular fungi on the development of Verticillium and Fusarium wilt of alfalfa. Plant Dis 76:239–243

    Google Scholar 

  • Jarstfer AG, Sylvia DM (1999) Aeroponic culture of VAM fungi. In: Varma A, Hock B (eds) Mycorrhiza: structure, function, molecular biology and biotechnology, 2nd edn. Springer-Verlag, Berlin, pp 427–441

    Google Scholar 

  • Jeffries P, Gianinazzi S, Perotto S, Turnau K, Barea JM (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fertil Soils 37:1–16

    Google Scholar 

  • Johnson NC (1993) Can fertilization of soil select less mutualistic mycorrhizae? Ecol Appl 3:749–757

    Google Scholar 

  • Johnson NC, Rowland DL, Corkidi L, Egerton-Warburton LM, Allen EB (2003) Nitrogen enrichment alters mycorrhizal allocation at five mesic to semiarid grasslands. Ecology 84:1895–1908

    Google Scholar 

  • Kabir Z, O’Halloran IP, Widden P, Hamel C (1998) Vertical distribution of arbuscular mycorrhizal fungi under corn (Zea mays L.) in no-till and conventional tillage systems. Mycorrhiza 8:53–55

    Google Scholar 

  • Karlen DL, Wollenhaupt NC, Erbach DC, Berry EC, Swan JB, Eash NS, Jordahl JL (1994) Crop residue effects on soil quality following 10-years of no-till corn. Soil Till Res 31:149–167

    Google Scholar 

  • Kelemu S, Thomas RJ, Moreno CX, Ocampo GI (1995) Strains of Bradyrhizobium from tropical forage legumes inhibit Rhizoctonia solani AG-1 in vitro. Austra Plant Path 24:168–172

    Google Scholar 

  • Khalequzaman KM, Hossain I (2008) Effect of seed treatment with Rhizobium strains and biofertilizers on foot/root rot and yield of bushbean in Fusarium oxysporum infested soil. J Agric Res 46:55–64

    Google Scholar 

  • Khalequzaman KM, Hossain I (2007) Effect of seed treatment with Rhizobium strains and biofertilizers on foot/root rot and yield of bushbean in Fusarium solani infested soil. J Agric Res 45:151–160

    Google Scholar 

  • Kjoller R, Rosendahl S (1997) The presence of arbuscular mycorrhizal fungus Glomus intraradices influences enzymatic activities of the root pathogen Aphanomyces euteiches in pea roots. Mycorrhiza 6:487–491

    Google Scholar 

  • Kumar BSD, Berggren I, Martensson AM (2001) Potential for improving pea production by co-inoculation with fluorescent Pseudomonas and Rhizobium. Plant Soil 229:25–34

    CAS  Google Scholar 

  • Kumarasinghe RMK, Nutman PS (1977) Rhizobium-stimulated callose formation in clover root hairs and its relation to infection. J Exp Bot 28:961–976

    Google Scholar 

  • Lambais MR, Mehdy MC (1993) Suppression of endochitinase β-1, 3-endoglucanase, and chalcone isomerase expression in bean VAM roots under different soil phosphate conditions. Mol Plant Microbe In 1:75–83

    Google Scholar 

  • Lee PJ, Koske RE (1994) Gigaspora gigantea seasonal abundance and aging of spores in a sand dune. Mycol Res 98:453–457

    Google Scholar 

  • Linderman RG (1992) VA mycorrhizae and soil microbial interactions. In: Bethelenfalvay GJ, Linderman RG (Eds.) Mycorrhizae in sustainable agriculture, ASA Spec. Pub. No. 54, Madison, WI, USA, pp 45–70

    Google Scholar 

  • Linderman RG (1994) Role of VAM fungi in biocontrol. In: Pfleger FL, Linderman RG (eds) Mycorrhizae and plant health. APS, St. Paul Minnesota, pp 1–26

    Google Scholar 

  • Liu RJ (1995) Effect of vesicular-arbuscular mycorrhizal fungi on Verticillium wilt of cotton. Mycorrhiza 5:293–297

    Google Scholar 

  • Madhavi DL, Smith MAL, Linas AC, Mitiku G (1997) Accumulation of ferulic acid in cell cultures of Ajuga pyramidalis metallica crispa. J Agric Food Chem 45:1506–1508

    CAS  Google Scholar 

  • Marschner P, Crowley DE, Lieberei R (2001) Arbuscular mycorrhizal infection changes the bacterial 16s rDNA community composition in the rhizosphere of maize. Mycorrhiza 11:297–302

    CAS  Google Scholar 

  • McGonigle TP, Evans DG, Miller MH (1990) Effect of degree of soil disturbance on mycorrhizal colonization and phosphorus absorption by maize in growth chamber and field experiments. New Phytol 116:629–636

    CAS  Google Scholar 

  • McGonigle TP, Miller MH (2000) The inconsistent effect of soil disturbance on colonisation of roots by arbuscular mycorrhizal fungi: a test of the inoculum density hypothesis. Appl Soil Ecol 14:147–153

    Google Scholar 

  • Merryweather J, Fitter A (1998) The arbuscular mycorrhizal fungi of Hyacinthoides nonscripta II seasonal and spatial patterns of fungal populations. New Phytol 138:131–142

    Google Scholar 

  • Meyer JR, Linderman RG (1986) Selective influences on populations of rhizosphere or rhizoplane bacteria and actinomycetes by mycorrhizas formed by Glomus fasciculatum. Soil Biol Biochem 18:191–196

    Google Scholar 

  • Mishra RPN, Singh RK, Jaiswal HK, Kumar V, Maurya S (2006) Rhizobium mediated induction of phenolics and plant growth promotion in rice (Oryza sativa L.). Curr Microbiol 52:383–389

    CAS  PubMed  Google Scholar 

  • Mohammad MJ, Pan WL, Kennedy AC (1998) Seasonal mycorrhizal colonization of winter wheat and its effect on what growth under dryland field conditions. Mycorrhiza 8:139–144

    Google Scholar 

  • Mole S, Waterman PG (1987) A critical analysis of techniques for measuring tannins in ecological studies. Oecologia 72:137–147

    Google Scholar 

  • Morandi D (1996) Occurrence of phytoalexins and phenolic compounds in endomycorrhizal interactions, and their potential role in biological control. Plant Soil 185:241–251

    CAS  Google Scholar 

  • Morandi D, Baily JA, Gianinazzi-Pearson V (1984) Isoflavonoid accumulation in soybean roots infected with vesicular-arbuscular mycorrhizal fungi. Physiol Plant Pathol 24:357–364

    CAS  Google Scholar 

  • Mosse B (1986) Mycorrhiza in a sustainable agriculture. Biol Agric Hort 3:191–209

    Google Scholar 

  • Mukerji KG (1999) Mycorrhiza in control of plant pathogens: molecular approaches. In: Mukerji KG, Chamola BP, Upadhyay RK (eds) Bio-technological approaches in biocontrol of plant pathogens. Kluwer Academic/Plenum Publishers, New York, pp 135–155

    Google Scholar 

  • Nicholson RL, Hammerschmidt R (1992) Phenolic compounds and their role in disease resistance. Ann Rev Phytopath 30:369–389

    CAS  Google Scholar 

  • Okakira E, Kawaguchi M (2006) Long-distance signaling to control root nodule number. Curr Opin Plant Biol 9:496–502

    CAS  Google Scholar 

  • Ozgonen H, Akgul DS, Erkilic A (2010) The effects of arbuscular mycorrhizal fungi on yield and stem rot caused by Sclerotium rolfsii Sacc. in peanut. Afr J Agric Res 5:128–132

    Google Scholar 

  • Ozgonen H, Bicici M, Erkilic A (1999) The effect of salicylic acid and endomycorrhizal fungus G. intraradices on plant development of tomato and fusarium wilt caused by Fusarium oxysporum f. sp. lycopersici. Turk J Agric For 25:25–29

    Google Scholar 

  • Ozgonen H, Erkilic A (2007) Growth enhancement and Phytophthora blight (Phytophthora capsici L.) control by arbuscular mycorrhizal fungal inoculation in pepper. Crop Protec 26:1682–1688

    Google Scholar 

  • Ozkoc I, Deliveli MH (2001) In vitro inhibition of the mycelial growth of some root rot fungi by Rhizobium leguminosarum Biovar phaseoli isolates. Turk J Biol 25:435–445

    Google Scholar 

  • Pacovsky RS, Bethelenfalvay GJ, Paul EA (1986) Comparisons between P-fertilized and mycorrhizal plants. Crop Sci 16:151–156

    Google Scholar 

  • Paget DK (1975) The effect of cylindrocarpon on plant growth responses to VA mycorrhizal. In: Sanders FE, Mosse B, Tinker PB (eds) Endomycorrhizae. Academic, London, pp 593–606

    Google Scholar 

  • Perret X, Staehelin C, Broughton WJ (2000) Molecular basis of symbiotic promiscuity. Microbiol Mol Biol Rev 64:180–201

    CAS  PubMed  Google Scholar 

  • Pozo MJ, Azcon-Aguilar C (2007) Unraveling mycorrhiza-induced resistance. Curr Opin Plant Biol 10:393–398

    CAS  PubMed  Google Scholar 

  • Pozo MJ, Cordier C, Dumas-Gaudot E, Gianinazzi S, Barea JM, Azcon-Aguilar C (2002) Localized verses systemic effect of arbuscular mycorrhizal fungi on defence responses to Phytophthora infection in tomato plants. J Exp Bot 53:525–534

    CAS  PubMed  Google Scholar 

  • Pritsch C, Muehlbauer GJ, Bushnell WR, Somers DA, Vance CP (2000) Fungal development and induction of defense response genes during early infection of wheat spikes by Fusarium graminerarum. Mol Plant Microbe In 13:159–169

    CAS  Google Scholar 

  • Rabie GH (1998) Induction of fungal disease resistance in Vicia faba by dual inoculation with Rhizobium leguminosarum and vesicular-arbuscular mycorrhizal fungi. Mycopathologia 141:159–166

    CAS  PubMed  Google Scholar 

  • Ramalingam J, Vera Cruz CM, Kukreja K, Chittoor JM, Wu JL, Lee SW, Baraoidan M, George ML, Cohen MB, Hulbert SH, Leach JE, Leung H (2003) Candidate defense genes from rice, barley, and maize and their association with qualitative and quantitative resistance in rice. Mol Plant Microbe In 16:14–24

    CAS  Google Scholar 

  • Rao KV, Krishnappa K (1995) Integrated management of Meloidogyne incognita, Fusarium oxysporum f. sp. ciceri wilt disease complex in chickpea. Int J Pest Manage 41:234–237

    Google Scholar 

  • Redecker D, Morton JB, Bruns TD (2000) Ancestral lineages of arbuscular mycorrhizal fungi (Glomales). Mol Phylogenet Evol 14:276–284

    CAS  PubMed  Google Scholar 

  • Rosendahl CN, Rosendahl S (1990) The role of vesicular arbuscular mycorrhizal fungi in controlling damping-off and growth reduction in cucumber caused by Pythium ultimum. Symbiosis 9:363–366

    Google Scholar 

  • Rosendahl S (1985) Interactions between the vesicular-arbuscular mycorrhizal fungus Glomus intraradices and Aphanomyces euteiches root rot of peas. Phytopathol Z 114:31–40

    Google Scholar 

  • Roslycky EB (1967) Bacteriocin production in the rhizobia bacteria. Can J Microbiol 13:431

    CAS  PubMed  Google Scholar 

  • Saikia SP, Jain V (2007) Biological nitrogen fixation with non-legumes: an achievable target or a dogma. Curr Sci 92:317–322

    CAS  Google Scholar 

  • Saunders JA, O’Neill NR (2004) The characterization of defense responses to fungal infection in alfalfa. Biocontrol 49:115–128

    Google Scholar 

  • Schußler A, Schwarzott D, Walker C (2001) A new fungal phylum the glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421

    Google Scholar 

  • Schußler A (2002) Molecular phylogeny, taxonomy, and evolution of Geosiphon pyriformis and arbuscular mycorrhizal fungi. Plant Soil 244:75–83

    Google Scholar 

  • Schalamuk S, Velásquez H, Chidichimo H, Cabello M (2004) Effect of no-till and conventional tillage on mycorrhizal colonization in spring wheat. Bol Soc Argent Bot 39:13–20

    Google Scholar 

  • Schellenbaum L, Berta G, Ravolanirina F, Tisserant B, Gianinazzi S, Fitter AH (1991) Infuence of endomycorrhizal infection on root morphology in micropropagated woody plant species (Vitis vinifera L.). Ann Bot 68:135–141

    Google Scholar 

  • Scheublin TR, Van der Heijden MGA (2006) Arbuscular mycorrhizal fungi colonize nonfixing root nodules of several legume species. New Phytol 172:732–738

    PubMed  Google Scholar 

  • Schonbeck F (1979) Endomycorrhiza in relation to plant disease. In: Schipper B, Gams W (eds) Soil borne plant pathogens. Academic, New York, pp 271–280

    Google Scholar 

  • Secilia J, Bagyaraj DJ (1987) Bacteria and actinomycetes associated with pot cultures of vesicular-arbuscular mycorrhizas. Can J Microbiol 33:1069–1073

    Google Scholar 

  • Sharif T, Khalil S, Ahmad S (2003) Effect of Rhizobium sp., on growth of pathogenic fungi under in vitro condition. Pak J Biol Sci 6:1597–1599

    Google Scholar 

  • Siddiqui ZA, Husain SI (1992) Interaction between Meloidogyne incognita race 3, Macrophomina phaseolina and Bradyrhizobium sp. in the root-rot disease complex of chickpea. Cicer arietinum. Fundam Appl Nematol 15:491–494

    Google Scholar 

  • Siddiqui ZA, Mahmood I (1994) Interactions of Meloidogyne javanica, Rotylenchulus reniformis, Fusarium oxysporum f. sp. ciceri and Bradyrhizobium japonicum on the wilt disease complex of chickpea. Nematol Medit 22:135–140

    Google Scholar 

  • Siddiqui ZA, Mahmood I (1995a) Role of plant symbionts in nematode management: a review. Bioresource Technol 54:217–226

    CAS  Google Scholar 

  • Siddiqui ZA, Mahmood I (1995b) Biological control of Heterodera cajani and Fusarium udum by Bacillus subtilis, Bradyrhizobium japonicum and Glomus fasciculatum on pigeonpea. Fundam Appl Nematol 18:559–566

    Google Scholar 

  • Siddiqui ZA, Mahmood I (1995c) Some observations on the management of the wilt disease complex of pigeonpea by treatment with vesicular-arbuscular fungus and biocontrol agents for nematodes. Bioresource Technol 54:227–230

    CAS  Google Scholar 

  • Siddiqui ZA, Mahmood I (1996) Biological control of Heterodera cajani and Fusarium udum on pigeonpea by Glomus mosseae, Trichoderma harzianum and Verticillium chlamydosporium. Israel J Plant Sci 44:49–56

    Google Scholar 

  • Siddiqui ZA, Mahmood I (1997) Interaction of Meloidogyne javanica, Fusarium solani and plant symbionts on chickpea. Thai J Agri Sci 30:379–388

    Google Scholar 

  • Siddiqui ZA, Mahmood I (1999) Effect of Heterodera cajani and Meloidogyne incognita with Fusarium udum and Bradyrhizobium japonicum on the wilt disease complex of pigeonpea. Indian Phytopathol 52:66–70

    Google Scholar 

  • Siddiqui ZA, Mahmood I, Hayat S (1998) Biocontrol of Heterodera cajani and Fusarium udum on pigeonpea using Glomus mosseae, Paecilomyces lilacinus and Pseudomonas fluorescens. Thai J Agri Sci 31:310–321

    Google Scholar 

  • Siddiqui ZA, Mir RA, Mahmood I (1999) Effects of Meloidogyne incognita, Fusarium oxysporum sp. pisi, Rhizobium sp., and different soil types on the growth chlorophyll and carotenoid pigments of pea. Isr J Plant Sci 47:251–256

    Google Scholar 

  • Siddiqui ZA, Pichtel J (2008) Mycorrhizae: an overview. In: Siddiqui ZA, Akhtar MS, Futai K (eds) Mycorrhizae: sustainable agriculture and forestry. Springer, Dordrecht, The Netherlands, p 5

    Google Scholar 

  • Siddiqui ZA, Shakeel U (2009) Biocontrol of wilt disease complex of pigeon pea (Cajanus cajan (L.) Millsp.) by isolates of Pseudomonas spp. Afr J Plant Sci 3:1–12

    CAS  Google Scholar 

  • Siddiqui ZA, Shakeel U, Siddiqui S (2008) Biocontrol of wilt disease complex of pigeonpea by fluorescent pseudomonads and Bacillus spp. under pot and field conditions. Acta Phytopathol Entomol Hungar 43:77–92

    CAS  Google Scholar 

  • Siddiqui ZA, Singh LP (2004) Effects of soil inoculants on the growth, transpiration and wilt disease of chickpea. J Plant Dis Protec 111:151–157

    Google Scholar 

  • Siddiqui ZA, Singh LP (2005) Effects of fly ash and soil micro-organisms on plant growth, photosynthetic pigments and leaf blight of wheat. J Plant Dis Protec 112:146–155

    Google Scholar 

  • Sieverding E (1991) Vesicular-arbuscular mycorrhiza management in tropical agrosystem. GTZ technical cooperation, Echborn, Germany

    Google Scholar 

  • Simpfendorfer S, Harden TJ, Murry GM (1999) The in vitro inhibition of Phytophthora clandestina by some rhizobia and the possible role of Rhizobium trifolii in biological control of Phytophthora root rot of subterranean clover. Austral J Agric Res 50:1469–1474

    Google Scholar 

  • Singh UP, Prithviraj B (1997) Neemazal, a product of neem (Azadirachta indica) induces resistance in pea (Pisum sativum) against Erysiphe pisi. Physiol Mol Plant Pathol 51:181–194

    CAS  Google Scholar 

  • Smith GS (1988) The role of phosphorus nutrition in interactions of vesicular-arbuscular mycorrhizal fungi with soilborne nematodes and fungi. Phytopathology 78:371–374

    CAS  Google Scholar 

  • Smith SE, Giananizzi-Pearson V (1988) Physiological interactions between symbionts in vesicular-arbuscular mycorrhizal plants. Annue Rev Plant Physiol Mol Biol 39:221–244

    CAS  Google Scholar 

  • Smith SE, Gianinazzi-Pearson V, Koide R, Kiany JWG (1994) Nutrient transports in mycorrhizas: structure, physiology and consequences for efficiency of the symbiosis. In: Robson AD, Abbott LK, Malajczuk N (eds) Management of mycorrhiza in agriculture, horticulture and forestry. Kluwer Drodecht, The Netherlands, pp 103–113

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, London

    Google Scholar 

  • Soto MJ, Sanjuan J, Olivares J (2006) Rhizobia and plant-pathogenic bacteria: common infection weapons. Microbiology 152:3167–3174

    CAS  PubMed  Google Scholar 

  • Spaink HP, Kondorosi A, Hooykaas PJJ (1998) The rhizobiaceae. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Spanu P, Boller T, Ludwig A, Wiemken A, Faccio A, Bonfonte-Fasol P (1989) Chitinase in roots of mycorrhizal Allium porrum: regulation and localization. Planta 117:447–455

    Google Scholar 

  • Sprent JI (2002) Nodulation in legumes. Royal Botanic Gardens, Kew

    Google Scholar 

  • St-Arnaud M, Hamel C, Caron M, Fortin JA (1994) Inhibition of Pythium ultimum in roots and growth substrate of mycorrhizal Tagetes patula colonized with Glomus intraradices. Can J Plant Pathol 16:187–194

    Google Scholar 

  • St-Arnaud M, Hamel C, Vimard B, Caron M, Fortin JA (1996) Enhanced hyphal growth and spore production of the arbuscular mycorrhizal fungus G. intraradices in an in vitro system in the absence of host roots. Mycol Res 100:328–332

    Google Scholar 

  • Sundaresan P, Ubalthoose RN, Gunasekaran P (1993) Induction and accumulation of phytoalexins in cowpea roots infected with a mycorrhizal fungus Glomus fasciculatum and their resistance to Fusarium wilt disease. J Biosci 18:291–301

    CAS  Google Scholar 

  • Thygesen K, Larsen J, Bodker L (2004) Arbuscular mycorrhizal fungi reduce development of pea root-rot caused by Aphanomyces euteiches using oospores as pathogen inoculums. Eur J Plant Pathol 110:411–419

    CAS  Google Scholar 

  • Tilak KVBR, Ranganayaki N, Manoharachari C (2006) Synergistic effects of plant-growth promoting rhizobacteria and Rhizobium on nodulation and nitrogen fixation by pigeonpea (Cajanus cajan). Eur J Soil Sci 57:67–71

    CAS  Google Scholar 

  • Torres-Barragan A, Zavaleta-Mejia E, Gonzalez-Chavez C, Ferrera-Cerrato R (1996) The use of arbuscular mycorrhizae to control onion white rot (Sclerotium cepivoru Berk.) under field conditions. Mycorrhiza 6:253–257

    Google Scholar 

  • Trotta A, Varese GC, Gnavi E, Fusconi A, Sampo S, Berta G (1996) Interactions between the soilborne root pathogen Phytophthora nicotianae var. parasitica and the arbuscular mycorrhizal fungus Glomus mosseae in tomato plants. Plant Soil 185:199–209

    CAS  Google Scholar 

  • Tu JC (1980) Incidence of root rot and over wintering of alfalfa as influenced by rhizobia. Phytopath Z 97:97–108

    Google Scholar 

  • Vance CP, Johnson LEB (1981) Nodulation: a plant disease perspective. Plant Dis 65:118–128

    Google Scholar 

  • Vierheilig H, Alt M, Gut-Rella M, Lange J, Boller T, Wiemken A (1996) Colonization of tobacco constitutively expressing pathogenesis-related proteins by arbuscular mycorrhizal fungi. In: Azcon-Aguilar C, Barea JM (Eds.) Mycorrhizas in integrated systems: from genes to plant development, European Commission, EUR 16728, Luxembourg, pp 270–273

    Google Scholar 

  • Vigo C, Norman JR, Hooker JE (2000) Biocontrol of pathogen Phytophthora parasitica by arbuscular mycorrhizal fungi is a consequence of effects on infection loci. Plant Pathol 49:509–514

    Google Scholar 

  • Volpin H, Elkind Y, Okon Y, Kalpulnik Y (1994) A vesicular arbuscular mycorrhizal fungus (Glomus intraradices) induces defence response in alfalfa roots. Plant Physiol 104:683–689

    CAS  PubMed  Google Scholar 

  • Volpin H, Phillips DA, Okon Y, Kalpulnik Y (1995) Suppression of an isoflavanoid phytoalexin defense response in mycorrhizal alfalfa roots. Plant Physiol 108:1449–1454

    CAS  PubMed  Google Scholar 

  • Wick RL, Moore LD (1984) Histology of mycorrhizal and non-mycorrhizal Ilex crenata ‘Helleri’ challenged by Thielaviopsis basicola. Can J Plant Pathol 6:146–150

    Google Scholar 

  • Yao M, Tweddell R, Desilets H (2002) Effect of two vesicular-arbuscular mycorrhizal fungi on the growth of micropropagated potato plantlets and on the extent of disease caused by Rhizoctonia solani. Mycorrhiza 12:235–242

    CAS  PubMed  Google Scholar 

  • Yao Q, Wanga LR, Zhu HH, Chen JZ (2009) Effect of arbuscular mycorrhizal fungal inoculation on root system architecture of trifoliate orange (Poncirus trifoliata L. Raf.) seedlings. Sci Hortic 121:458–461

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd. Sayeed Akhtar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Akhtar, M.S., Siddiqui, Z.A., Wiemken, A. (2011). Arbuscular Mycorrhizal Fungi and Rhizobium to Control Plant Fungal Diseases. In: Lichtfouse, E. (eds) Alternative Farming Systems, Biotechnology, Drought Stress and Ecological Fertilisation. Sustainable Agriculture Reviews, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0186-1_9

Download citation

Publish with us

Policies and ethics