Skip to main content

Part of the book series: Theoretical and Mathematical Physics ((TMP))

  • 2077 Accesses

Abstract

We discuss in this chapter the following topics in quantum information: (1) the channel capacity for quantum communication processes by applying the quantum mutual entropy introduced in Chap. 7, (2) formulations of quantum analogues of McMillan’s theorem and coding type theorem for entanglement transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barnum, H., Nielsen, M.A., Schumacher, B.: Information-theoretic approach to quantum error correction and reversible measurement. Proc. R. Soc. Lond. Ser. A, Math. Phys. Eng. Sci. 454(1969), 277–304 (1998). Quantum Coherence and Decoherence (Santa Barbara, CA, 1996)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. Barnum, H., Knill, E., Nielsen, M.A.: On quantum fidelities and channel capacities. IEEE Trans. Inf. Theory 46(4), 1317–1329 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  3. Caves, C.M., Drummond, P.D.: Quantum limits on bosonic communication rates. Rev. Mod. Phys. 66, 481–537 (1994)

    Article  ADS  Google Scholar 

  4. Csiszár, I.: I-divergence geometry of probability distributions and minimization problems. Ann. Probab. 3, 146–158 (1975)

    Article  MATH  Google Scholar 

  5. Devetak, I., Shor, P.W.: The capacity of a quantum channel for simultaneous transmission of classical and quantum information. quant-ph/0311131 (2004)

  6. Fujiwara, A., Nagaoka, H.: Capacity of memoryless quantum communication channels. Math. Eng. Tech. Rep. 94–22, University of Tokyo (1994)

    Google Scholar 

  7. Gordon, J.P.: Noise at optical frequencies; information theory. In: Miles, P.A. (ed.) Quantum Electronics and Coherent Light; Proceedings of the International School of Physics “Enrico Fermi,” Course XXXI, pp. 156–181. Academic Press, San Diego (1964)

    Google Scholar 

  8. Hiai, F., Ohya, M., Petz, D.: McMillan type convergence for quantum Gibbs states. Arch. Math. 64, 154–158 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  9. Holevo, A.S.: The capacity of quantum channel with general signal states. IEEE Trans. Inf. Theory 44, 269–273 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  10. Levitin, L.B.: On the quantum measure of the amount of information. In: Proceedings of the IV National Conference on Information Theory, Tashkent, pp. 111–115. Springer, Berlin (1969) (in Russian). Information theory for quantum systems. In: Blaqui‘ere, A., Diner, S., Lochak, G. (eds.) Information, Complexity, and Control in Quantum Physics (1987)

    Google Scholar 

  11. Ohya, M.: On compound state and mutual information in quantum information theory. IEEE Trans. Inf. Theory 29, 770–777 (1983)

    Article  MATH  Google Scholar 

  12. Ohya, M., Tsukada, M., Umegaki, H.: A formulation of noncommutative McMillan theorem. Proc. Jpn. Acad. Ser. A 63(3), 50–53 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ohya, M., Petz, D.: Quantum Entropy and Its Use. Springer, Berlin (1993)

    MATH  Google Scholar 

  14. Ohya, M., Petz, D.: Notes on quantum entropy. Studia Sci. Math. Hung. 31, 423–430 (1996)

    MATH  MathSciNet  Google Scholar 

  15. Ohya, M., Petz, D., Watanabe, N.: On capacities of quantum channels. Prob. Math. Stat. 17, 179–196 (1997)

    MATH  MathSciNet  Google Scholar 

  16. Ohya, M.: Complexities and their applications to characterization of chaos. Int. J. Theor. Phys. 37(1), 495–505 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  17. Ohya, M., Petz, D., Watanabe, N.: Numerical computation of quantum capacity. Int. J. Theor. Phys. 38(1), 507–510 (1998)

    Article  MathSciNet  Google Scholar 

  18. Ohya, M.: Fundamentals of quantum mutual entropy and capacity. Open Syst. Inf. Dyn. 6(1), 69–78 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  19. Ohya, M., Volovich, I.V.: On quantum entropy and its bound. In: Infinite Dimensional Analysis and Quantum Probability, vol. 6, pp. 301–310 (2003)

    Google Scholar 

  20. Schumacher, B.: Sending entanglement through noisy quantum channels. Phys. Rev. A 51, 2614–2628 (1993)

    Google Scholar 

  21. Yuen, H.P., Ozawa, M.: Ultimate information carrying limit of quantum systems. Phys. Rev. Lett. 70, 363–366 (1993)

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masanori Ohya .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ohya, M., Volovich, I. (2011). Quantum Capacity and Coding. In: Mathematical Foundations of Quantum Information and Computation and Its Applications to Nano- and Bio-systems. Theoretical and Mathematical Physics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0171-7_9

Download citation

Publish with us

Policies and ethics