Skip to main content

Part of the book series: Theoretical and Mathematical Physics ((TMP))

  • 2091 Accesses

Abstract

This chapter is devoted to miscellaneous topics related to quantum information and quantum probability. They haven’t been either completed or used much for quantum information, yet, but they will be important for the future development in these fields. Topics discussed in this chapter are more or less conceptual, so that we will not always provide complete proofs to some of the statements, but we will indicate where each proof can be found. In particular such topics as lifting, possible decreasing of entropy, stochastic limit, Janes–Cummings model, Kolmogorov–Sinai complexities, decoherence, chaos degree, and quantum baker’s map are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Accardi, L.: Noncommutative Markov chain. In: International School of Mathematical Physics, Camerino, pp. 268–295 (1974)

    Google Scholar 

  2. Accardi, L.: Topics in quantum probability. Phys. Rep. 71, 169–192 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  3. Accardi, L., Frigerio, A., Lewis, J.: Quantum stochastic processes. Publ. Res. Inst. Math. Sci. 18, 97–133 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  4. Accardi, L., Frigerio, A.: Markov cocycles. Proc. R. Ir. Acad. Sci. A 83, 251–269 (1983)

    MATH  MathSciNet  Google Scholar 

  5. Accardi, L., Ohya, M., Suyari, H.: An application of lifting theory to optical communication processes. Rep. Math. Phys. 36, 403–420 (1995)

    Article  MathSciNet  Google Scholar 

  6. Accardi, L., Ohya, M., Watanabe, N.: Note on quantum dynamical entropies. Rep. Math. Phys. 38(3), 457–469 (1996)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Accardi, L., Ohya, M., Watanabe, N.: Dynamical entropy through quantum Markov chains. Open Syst. Inf. Dyn. 4, 71–87 (1997)

    Article  MATH  Google Scholar 

  8. Accardi, L., Kozyrev, S.V., Volovich, I.V.: Dynamics of dissipative two-state systems in the stochastic approximation. Phys. Rev. A 56(3), 2557–2562 (1997)

    Article  ADS  Google Scholar 

  9. Accardi, L., Ohya, M.: Compound channels, transition expectations, and liftings. Appl. Math. Optim. 39, 33–59 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  10. Accardi, L., Lu, Y.G., Volovich, I.V.: Quantum Theory and Its Stochastic Limit. Springer, Berlin (2002)

    MATH  Google Scholar 

  11. Alekseev, V.M., Yakobson, M.N.: Symbolic dynamics and hyperbolic dynamic systems. Phys. Rep. 75, 287–325 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  12. Alicki, R., Fannes, M.: Defining quantum dynamical entropy. Lett. Math. Phys. 32, 75–82 (1994)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. Anosov, D.V., Arnold, V.I. (eds.): Dynamical Systems. VINITI, Moscow (1996)

    Google Scholar 

  14. Araki, H.: Relative entropy of states of von Neumann algebras. Publ. Res. Inst. Math. Sci., Kyoto Univ. 11, 809–833 (1976)

    Article  MathSciNet  Google Scholar 

  15. Aref’eva, I.Y., Medvedev, P.B., Rytchkov, O.A., Volovich, I.V.: Chaos Solitons Fractals 10(2–3), 213 (1999)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. Arnold, V.I., Avez, A.: Ergodic Problems of Classical Mechanics. Benjamin, Elmsford (1968)

    Google Scholar 

  17. Balazs, N.L., Voros, A.: The quantized baker’s transformation. Ann. Phys. 190, 1–31 (1989)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. Balazs, N.L., Lakshminarayan, A.: The classical and quantum mechanics of lazy baker maps. Ann. Phys. 226, 350 (1993)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. Benatti, F.: Deterministic Chaos in Infinite Quantum Systems. Trieste Notes in Physics. Springer, Berlin (1993)

    Google Scholar 

  20. Berman, G.P., Zaslavsky, G.M.: Condition of stochasticity in quantum non-linear systems. Physica A 91, 450–460 (1978)

    Article  MathSciNet  ADS  Google Scholar 

  21. Berry, M.V.: Evolution of semiclassical quantum states in phase space. J. Phys. A 12, 625–642 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  22. Berry, M.V.: Some quantum to classical asymptotics. In: Giannoni, M.J., Voros, A., Justi, Z. (eds.) Les Houches Summer School “Chaos and Quantum Physics”. North-Holland, Amsterdam (1991)

    Google Scholar 

  23. Billingsley, P.: Ergodic Theory and Information. Wiley, New York (1968)

    Google Scholar 

  24. Bogoliubov, N.N.: Problems of a Dynamical Theory in Statistical Physics (1959). Translated by E. Gora, Providence College, Providence

    Google Scholar 

  25. Boltzmann, L.: Vorlesungen Ëuber Gastheorie, vol. 2. Barth, Leipzig (1896/1898). This book has been translated into English by S.G. Brush, Lectures on Gas Theory. Cambridge University Press, London (1964), reprinted Dover (1995)

    Google Scholar 

  26. Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics, vol. II. Springer, New York (1981)

    Google Scholar 

  27. Brun, T., Schack, R.: Realizing the quantum baker’s map on a NMR quantum computer. Phys. Rev. A 59, 2649 (1999)

    Article  ADS  Google Scholar 

  28. Casati, G., Chirikov, B.V. (eds.): Quantum Chaos: Between Order and Disorder. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  29. Choda, M.: Entropy for extensions of Bernoulli shifts. Ergod. Theory Dyn. Syst. 16(6), 1197–1206 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  30. Connes, A., Störmer, E.: Entropy for automorphisms of II von Neumann algebras. Acta Math. 134, 289–306 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  31. Connes, A., Narnhofer, H., Thirring, W.: Dynamical entropy of C-algebras and von Neumann algebras. Commun. Math. Phys. 112, 691–719 (1987)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  32. Cornfeld, I., Fomin, S., Sinai, Ya.G.: Ergodic Theory. Springer, New York (1982)

    MATH  Google Scholar 

  33. Davies, E.B.: Quantum Theory of Open System. Academic Press, San Diego (1976)

    Google Scholar 

  34. De Masi, A., Presutti, E.: Mathematical Methods for Hydrodynamic Limits. Lecture Notes in Math., vol. 1501. Springer, New York (1991)

    MATH  Google Scholar 

  35. Dittes, F.M., Doron, E., Smilansky, U.: Long-time behavior of the semiclassical baker’s map. Phys. Rev. E 49, R963–R966 (1994)

    Article  ADS  Google Scholar 

  36. Emch, G.G.: Algebraic Methods in Statistical Mechanics and Quantum Field Theory. Wiley, New York (1972)

    MATH  Google Scholar 

  37. Emch, G.G.: Positivity of the K-entropy on non-abelian K-flows. Z. Wahrscheinlichkeitstheor. Verw. Geb. 29, 241–252 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  38. Emch, G.G., Narnhofer, H., Thirring, W., Sewell, G.L.: Anosov actions on noncommutative algebras. J. Math. Phys. 35(11), 5582–5599 (1994)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  39. Emerson, J., Ballentine, L.E.: Quantum-classical correspondence for the equilibrium distributions of two interacting spins. Phys. Rev. E 64, 026217 (2001)

    Article  ADS  Google Scholar 

  40. Feynman, R.P.: The Character of Physical Law. MIT Press, Cambridge (1967). Chap. 5

    Google Scholar 

  41. Furuichi, S., Ohya, M.: Entanglement degree in the time development of the Jaynes-Cummings model. Lett. Math. Phys. 49, 279–285 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  42. Giulini, D., Joos, E., Kiefer, C., Kupsch, J., Stamatescu, I.O., Zeh, H.D.: Decoherence and the Appearance of a Classical World in Quantum Theory. Springer, Berlin (1996)

    MATH  Google Scholar 

  43. Goldstein, S., Lebowitz, J.L.: On the (Boltzmann) entropy of nonequilibrium systems. Physica D 193, 53–66 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  44. Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive semigroups of N-level systems. J. Math. Phys. 17, 821 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  45. Gutzwiller, M.C.: Chaos in Classical and Quantum Mechanics. Springer, Berlin (1990)

    MATH  Google Scholar 

  46. Habib, S., Shizume, K., Zurek, W.H.: Decoherence, chaos, and the correspondence principle. Phys. Rev. Lett. 80, 4361–4365 (1998)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  47. Hasegawa, H.: Dynamical formulation of quantum level statistics. Open Syst. Inf. Dyn. 4, 359–377 (1997)

    Article  MATH  Google Scholar 

  48. Hepp, K.: The classical limit for quantum mechanical correlation functions. Commun. Math. Phys. 35, 265–277 (1974)

    Article  MathSciNet  ADS  Google Scholar 

  49. Hiai, F., Petz, D.: Entropy density for algebraic states. J. Funct. Anal. 125, 287–308 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  50. Hudetz, T.: Topological entropy for appropriately approximated C-algebras. J. Math. Phys. 35(8), 4303–4333 (1994)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  51. Ingarden, R.S., Kossakowski, A., Ohya, M.: Information Dynamics and Open Systems. Kluwer Academic, Dordrecht (1997)

    MATH  Google Scholar 

  52. Inoue, K., Ohya, M., Sato, K.: Application of chaos degree to some dynamical systems. Chaos Solitons Fractals 11, 1377–1385 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  53. Inoue, K., Ohya, M., Volovich, I.V.: On quantum-classical correspondence for baker’s map. quant-ph/0108107 (2001)

  54. Inoue, K., Ohya, M., Volovich, I.V.: Semiclassical properties and chaos degree for the quantum baker’s map. J. Math. Phys. 43(1), 734 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  55. Inoue, K., Ohya, M., Volovich, I.V.: On quantum classical correspondence for baker’s map. In: Quantum Probability and White Noise Analysis, vol. 17, pp. 177–187 (2003)

    Google Scholar 

  56. Inoue, K., Matsuoka, T., Ohya, M.: New approach to ε-entropy and fractal dimension of a state for a Gaussian measure. Open Syst. Inf. Dyn. 7(1), 41–53 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  57. Isar, A.: Density operator and entropy of the damped quantum harmonic oscillator. Helv. Phys. Acta 68, 225–234 (1995)

    MATH  MathSciNet  Google Scholar 

  58. Jaynes, E.T.: Violation of Boltzmann’s H theorem in real gases. Phys. Rev. A 4, 747–750 (1971)

    Article  ADS  Google Scholar 

  59. Kaplan, L., Heller, E.J.: Overcoming the wall in the semiclassical baker’s map. Phys. Rev. Lett. 76, 1453–1456 (1996)

    Article  ADS  Google Scholar 

  60. Karkuszewski, Z.P., Zakrzewski, J., Zurek, W.H.: Breakdown of correspondence in chaotic systems: Ehrenfest versus localization times. Phys. Rev. A 65, 042113 (2002)

    Article  ADS  Google Scholar 

  61. Khrennikov, A., Volovich, J.I.: Discrete time dynamical models and their quantum-like context-dependent properties. J. Mod. Opt. 51, 113–114 (2004)

    MathSciNet  Google Scholar 

  62. Khrennikov, A., Volovich, Ya.I.: Energy levels of “Hydrogen atom” in discrete time dynamics. Open Syst. Inf. Dyn. 13, 119–132 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  63. Kishimoto, A.: Dissipations and derivations. Commun. Math. Phys. 47(1), 25–32 (1976)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  64. Klaus, D.: Decoherence by Lindblad motion. J. Phys. A, Math. Gen. 37, 6143–6155 (2004)

    Article  MATH  Google Scholar 

  65. Kolmogorov, A.N.: Theory of transmission of information. Am. Math. Soc. Transl., Ser. 2 33, 291–321 (1963)

    Google Scholar 

  66. Kossakowski, A., Ohya, M., Watanabe, N.: Quantum dynamical entropy for completely positive maps. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 2(2), 267–282 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  67. Kozlov, V.V.: Thermodynamic Equilibrium According to Gibbs and Poincare. Institute of Computer Science, Moscow-Ijevsk (2002) (in Russian)

    Google Scholar 

  68. Kozlov, V.V., Treshchev, D.V.: Fine-grained and coarse-grained entropy in problems of statistical mechanics. Theor. Math. Phys. 151, 539–555 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  69. Kullback, S., Leibler, R.: On information and sufficiency. Ann. Math. Stat. 22, 79–86 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  70. Lakshminarayan, A.: On the quantum Baker’s map and its unusual traces. Ann. Phys. 239, 272 (1995)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  71. Landau, L.D., Lifshiz, E.M.: Statistical Physics, Part 1. Pergamon, Elmsford (1980)

    Google Scholar 

  72. Landim, C., Kipnis, C.: Scaling Limits for Interacting Particle Systems. Springer, Berlin (1998)

    Google Scholar 

  73. Lanford, O.E.: Time evolution of large classical systems. In: Moser, J. (ed.) Lecture Notes in Physics, vol. 38, pp. 1–111. Springer, Berlin (1975)

    Google Scholar 

  74. Lanford, O.E.: Hard-sphere gas in the Boltzmann-Grad limit. Physica A 106, 70–76 (1981)

    Article  ADS  Google Scholar 

  75. Lebowitz, J.L.: From time-symmetric microscopic dynamics to time-asymmetric macroscopic behavior: an overview. arXiv:0709.0724 (2007)

  76. Leggett, A.J., Chakravarty, S., Dorsey, A.T., Fisher, M.P.A., Garg, A., Zwerger, W.: Dynamics of the dissipative two-state system. Rev. Mod. Phys. 59(1), 1–85 (1987)

    Article  ADS  Google Scholar 

  77. Lindblad, G.: Completely positive maps and entropy inequalities. Commun. Math. Phys. 40, 147–151 (1975)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  78. Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119 (1976)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  79. Mandelbrot, B.B.: The Fractal Geometry of Nature. Freemann, New York (1982)

    MATH  Google Scholar 

  80. Mariano, A., Facchi, P., Pascazio, S.: Decoherence and fluctuations in quantum interference experiments. Fortschr. Phys. 49, 1033–1039 (2001)

    Article  MATH  Google Scholar 

  81. Maslov, V.P.: Perturbation Theory and Asymptotic Methods. MGU, Moscow (1965)

    Google Scholar 

  82. Matsuoka, T., Ohya, M.: Fractal dimensions of states and its application to Ising model. Rep. Math. Phys. 36, 365–379 (1995)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  83. Miyadera, T., Ohya, M.: Quantum dynamical entropy of spin systems. Rep. Math. Phys. 56(1), 1–10 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  84. Monteoliva, D., Paz, J.P.: Decoherence in a classically chaotic quantum system: entropy production and quantum-classical correspondence. Phys. Rev. E 64, 056238 (2001)

    Article  ADS  Google Scholar 

  85. Muraki, N., Ohya, M.: Entropy functionals of Kolmogorov–Sinai type and their limit theorems. Lett. Math. Phys. 36, 327–335 (1996)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  86. Nieuwenhuizen, Th.M., Volovich, I.V.: Role of various entropies in the black hole information loss problem. In: Nieuwenhuizen, Th.M., et al. (eds.) Beyond the Quantum. World Scientific, Singapore (2007)

    Google Scholar 

  87. O’Connor, P.W., Tomsovic, S.: The usual nature of the quantum baker’s transformation. Ann. Phys. 207, 218 (1991)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  88. Ohya, M.: On open system dynamics—an operator algebraic study. Kodai Math. J. 3, 287–294 (1979)

    Article  MathSciNet  Google Scholar 

  89. Ohya, M.: On compound state and mutual information in quantum information theory. IEEE Trans. Inf. Theory 29, 770–777 (1983)

    Article  MATH  Google Scholar 

  90. Ohya, M.: Note on quantum proability. L. Nuovo Cimento 38(11), 203–206 (1983)

    MathSciNet  Google Scholar 

  91. Ohya, M., Watanabe, N.: A new treatment of communication processes with Gaussian channels. Jpn. J. Appl. Math. 3(1), 197–206 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  92. Ohya, M.: Some aspects of quantum information theory and their applications to irreversible processes. Rep. Math. Phys. 27, 19–47 (1989)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  93. Ohya, M.: Fractal dimensions of states. In: Quantum Probability and Related Topics, vol. 6, pp. 359–369. World Scientific, Singapore (1991)

    Google Scholar 

  94. Ohya, M., Petz, D.: Quantum Entropy and Its Use. Springer, Berlin (1993)

    MATH  Google Scholar 

  95. Ohya, M.: State change, complexity and fractal in quantum systems. In: Quantum Communications and Measurement, vol. 2, pp. 309–320. Plenum, New York (1995)

    Google Scholar 

  96. Ohya, M.: Complexities and their applications to characterization of chaos. Int. J. Theor. Phys. 37(1), 495–505 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  97. Ojima, I.: Entropy production and nonequilibrium stationarity in quantum dynamical systems. Physical meaning of Van Hove limit. J. Stat. Phys. 56, 203–226 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  98. Ojima, I.: Micro-macro duality in quantum physics. In: Hida, T. (ed.) Stochastic Analysis: Classical and Quantum Perspectives of White Noise Theory, pp. 143–161. World Scientific, Singapore (2005)

    Chapter  Google Scholar 

  99. Ojima, I., Hasegawa, H., Ichiyanagi, M.: Entropy production and its positivity in nonlinear response theory of quantum dynamical systems. J. Stat. Phys. 50, 633–655 (1988)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  100. Onsager, L.: Thermodynamics and some molecular aspects of biology. In: Quarton, G.C., Nelnechuk, T., Schmitt, F.O. (eds.) The Neurosciences. A study program, pp. 75–79. Rockefeller University Press, New York (1967)

    Google Scholar 

  101. Ozorio de Almeida, A.M., Saraceno, M.: Periodic orbit theory for the quantized baker’s map. Ann. Phys. 210, 1–15 (1991)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  102. Ozorio de Almeida, A.M., Hannay, J.H., Keating, J.P.: Optical realization of the quantum baker’s transformation. Nonlinearity 7, 1327 (1994)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  103. Ozorio de Almeida, A.M., Luz, M.G.E.: Path integral for the quantum baker’s map. Nonlinearity 8, 43–64 (1995)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  104. Palma, G.M., Suominen, K.-A., Ekert, A.K.: Quantum computers and dissipation. Proc. R. Soc. Lond. Ser. A 452, 567–574 (1996)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  105. Park, Y.M.: Dynamical entropy of generalized quantum Markov chains. Lett. Math. Phys. 32, 63–74 (1994)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  106. Paz, J.P., Zurek, W.H.: Decoherence, chaos, and the second law. Phys. Rev. Lett. 72, 2508–2511 (1994)

    Article  ADS  Google Scholar 

  107. Pechen, A., Rabitz, H.: Unified analysis of terminal-time control in classical and quantum systems. Europhys. Lett. 91, 60005 (2010). arXiv:1011.1269

    Article  ADS  Google Scholar 

  108. Penrose, O.: Foundations of Statistical Mechanics. Pergamon, Elmsford (1970). Reprinted by Dover (2005)

    MATH  Google Scholar 

  109. Ruelle, D.: Chance and Chaos. Princeton University Press, Princeton (1991)

    Google Scholar 

  110. Sakai, S.: C -algebras and W -algebras. Springer, Berlin (1971)

    Google Scholar 

  111. Saraceno, M.: Classical structures in the quantized baker transformation. Ann. Phys. 199, 37–60 (1990)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  112. Saraceno, M., Voros, A.: Towards a semiclassical theory of quantum baker’s map. Physica D 79, 206–268 (1994)

    MATH  MathSciNet  ADS  Google Scholar 

  113. Schack, R.: Using a quantum computer to investigate quantum chaos. Phys. Rev. A 57, 1634–1635 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  114. Schack, R., Caves, C.M.: Hypersensitivity to perturbations in the quantum baker’s map. Phys. Rev. Lett. 71, 525–528 (1993)

    Article  ADS  Google Scholar 

  115. Schack, R., Caves, C.M.: Information-theoretic characterization of quantum chaos. Phys. Rev. E 53, 3257 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  116. Schack, R., Caves, C.M.: Shifts on a finite qubit string: a class of quantum baker’s maps. Appl. Algebra Eng. Commun. Comput. 10, 305–310 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  117. Schack, R., Soklakov, A.N.: Decoherence and linear entropy increase in the quantum baker’s map. Phys. Rev. E 66, 036212 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  118. Sinai, Ya.G.: Introduction to Ergodic Theory. Princeton University Press, Princeton (1977)

    Google Scholar 

  119. Sipser, M.: Introduction to the Theory of Computation. Brooks Cole, Boston (1996)

    Google Scholar 

  120. Soklakov, A.N., Schack, R.: Classical limit in terms of symbolic dynamics for the quantum baker’s map. Phys. Rev. E 61, 5108–5114 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  121. Spohn, H.: Approach to equilibrium for completely positive dynamical semigroups of n-level systems. Rep. Math. Phys. 10, 189–194 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  122. Spohn, H.: Large Scale Dynamics of Interacting Particles. Springer, New York (1991)

    MATH  Google Scholar 

  123. Tomiyama, J.: On the projection of norm one in W-algebras. Proc. Jpn. Acad. 33, 608–612 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  124. Uhlmann, A.: Relative entropy and the Wigner-Yanase-Dyson-Lieb concavity in interpolation theory. Commun. Math. Phys. 54, 21–32 (1977)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  125. Umegaki, H.: Conditional expectation in an operator algebra. Tohoku Math. J. 6, 177–181 (1954)

    Article  MATH  MathSciNet  Google Scholar 

  126. Umegaki, H.: Conditional expectations in an operator algebra IV (entropy and information). Kodai Math. Semin. Rep. 14, 59–85 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  127. Unruh, W.: Maintaining coherence in quantum computers. Phys. Rev. A 51, 992–997 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  128. Viola, L., Lloyd, S.: Dynamical suppression of decoherence in two-state quantum systems. Phys. Rev. A 58(4), 2733–2744 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  129. Voiculescu, D.: Dynamical approximation entropies and topological entropy in operator algebras. Commun. Math. Phys. 170, 249–281 (1995)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  130. Volovich, I.V.: Quantum computers and neural networks. Invited talk at the International Conference on Quantum Information held at Meijo University, 4–8 Nov 1997

    Google Scholar 

  131. von Neumann, J.: Die Mathematischen Grundlagen der Quantenmechanik. Springer, Berlin (1932)

    Google Scholar 

  132. Zaslavskii, G.M.: Stochasticity of Dynamical System. Nauka, Moscow (1984)

    Google Scholar 

  133. Zurek, W.H.: Pointer basis of quantum apparatus: Into what mixture does the wave packet collapse? Phys. Rev. D 24, 1516 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  134. Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715–775 (2003)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masanori Ohya .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ohya, M., Volovich, I. (2011). Miscellaneous in Quantum Theory and Information. In: Mathematical Foundations of Quantum Information and Computation and Its Applications to Nano- and Bio-systems. Theoretical and Mathematical Physics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0171-7_20

Download citation

Publish with us

Policies and ethics