Skip to main content

Deep-Water Tidal Sedimentology

  • Chapter
  • First Online:
Principles of Tidal Sedimentology

Abstract

Tides are well-documented in modern deep-water environment, especially around areas of topography on the seafloor such as ocean ridges and continental slopes. Recognition of deep-water tidal deposits in the ancient has lagged far behind, however, with very few examples in the published literature. This paper presents a review of the current state of knowledge about both modern deep-water tidal sediments and ancient deep-water tidal deposits, including new data on tidalites from the Cretaceous Wheeler Gorge channel-levee complex (California), and the Cretaceous Cajiloa submarine canyon (Mexico). In both of these settings detailed analysis of laminae thickness trends revealed cyclicities with frequencies characteristic of tidal deposits. Recognition criteria for ancient deep-water tidal deposits include statistically significant cyclicities within thin successions (tidalites are unlikely to be very thick) in combination with mud-couplets, mud-bounded ripples, ripples with reactivation surfaces, and, more rarely, bi-directional ripple sets. Typical tidalites successions include cyclically thickening and thinning laminae (5–40 cm thick), and rippled intervals (5–20 cm thick) that exhibit large energy asymmetries (mud drapes) and an overall increase then decrease in ripple size, often arranged in cycles. Although tides are common in deep-water environments, settings where deposits may be preserved are relatively rare. Such settings must not be subject to erosive turbidity currents yet require a relatively steady sediment supply and local accommodation space. Abandoned meander bends, the backsides of levees, topographic lows on the surface of submarine landslides, and abandoned plunge pools all potentially fit this category. This paper documents a tidalite succession that is preserved within a topographic low above a submarine landslide deposit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adkins F, McIntyre K, Schrag DP (2002) The salinity, temperature, and delta 18O of the glacial deep ocean. Science 298:1769–1773

    Article  Google Scholar 

  • Allen GL, Simpson JH (1998) Reflection of the internal tide in Upper Loch Linnhe, a Scottish Fjord. Estuarine Coast Shelf Sci 46:683–701

    Article  Google Scholar 

  • Amy LA, Kneller BC, McCaffrey WD (2007) Facies architecture of the Gres de Peira Cava, SE France: landward stacking patterns in ponded turbiditic basins. J Geol Soc 164:143–162

    Article  Google Scholar 

  • Archer AW (1996) Reliability of lunar orbital periods extracted from ancient cyclic tidal rhythmites: Earth and Planetary Science Letters 141:1–10

    Google Scholar 

  • Benn DI, Evans DJ (1998) Glaciers & glaciation. Arnold, London, 734 p

    Google Scholar 

  • Bouma AH (1962) Sedimentology of some flysch deposits: a graphic approach to facies interpretation. Elsevier, Amsterdam, 168 p

    Google Scholar 

  • Cacchione D, Schwab W, Noble M, Tate G (1988) Internal tides and sediment movement on Horizon Guyot, Mid-Pacific mountains. Geo-Mar Lett 8:11–17

    Article  Google Scholar 

  • Cacchione DA, Pratson LF, Ogstona AS (2002) The shaping of continental slopes by internal tides. Science 296:724–727

    Article  Google Scholar 

  • Chengxin L, Zhenzhong G, Youliang J, Xiaolong W (2005) Ordovician deep-water traction current deposits on the southwestern margin of the Ordos Basin Haiyang Dizhi yu Disiji Dizhi. Mar Geol Quat Geol 25:31–36

    Google Scholar 

  • Cowan EA, Cai J, Powell RD, Clark JD, Pitcher JN (1997) Temperate glacimarine varves: an example from Disenchantment Bay, southern Alaska. J Sediment Res 67:536–549

    Google Scholar 

  • Cowan EA, Cai J, Powell RD, Seramur KC, Spurgeon VL (1998) Modern tidal rhythmites deposited in a deep-water estuary. Geo-Mar Lett 18:40–48

    Article  Google Scholar 

  • Dalrymple RW, Baker EK, Harris PT, Hughes MG (2003) Sedimentology and stratigraphy of a tide-dominated, foreland-basin delta (Fly River, Papua New Guinea). In: Tropical deltas of Southeast Asia. SEPM Spec Publ 76:147–173

    Google Scholar 

  • Dalrymple RW (2010) Tidal depositional systems. In: James NP, Dalryple RW (eds) Facies Models 4:201–231

    Google Scholar 

  • Damuth J, Flood R, Kowsmann R, Belderson R, Gorini M (1988) Anatomy and growth pattern of Amazon deep-sea fan as revealed by long-range side-scan sonar (GLORIA) and high-resolution seismic studies. Am Assoc Petrol Geol Bull 72:885

    Google Scholar 

  • De Boer PL, Oost AP, Visser MJ (1989) The diurnal inequality of the tide as a parameter for recognizing tidal influences. J Sediment Res 59:912–921

    Google Scholar 

  • Dykstra M (2005) Dynamics of sediment mass-transport from the shelf to the deep sea. Ph.D dissertation, University of California, Santa Barbara, 152 p

    Google Scholar 

  • Dykstra M, Kneller B (2007) Canyon San Fernando, Baja California, Mexico: a deep-marine channel-levee complex that evolved from submarine canyon confinement to unconfined deposition. In: Nilsen TH, Shew HD, Steffens GS, Studlick JRJ (eds) Atlas of deep-water outcrops; CD ROM. American Association of Petroleum Geologists Studies in Geology 56, 14 p

    Google Scholar 

  • Dykstra M, Kneller B (2009) Lateral accretion in a deep-marine channel complex: implications for channelized flow processes in turbidity currents. Sedimentology 56:1411–1432

    Article  Google Scholar 

  • Egbert GD, Ray RD (2000) Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature 405:775–778

    Article  Google Scholar 

  • Egbert GD, Ray RD (2003) Semi-diurnal and diurnal tidal dissipation from TOPEX/Poseidon altimetry. Geophys Res Lett 30:1907–1910

    Article  Google Scholar 

  • Egbert GD, Ray RD, Bills BG (2004) Numerical modeling of the global semidiurnal tide in the present day and in the last glacial maximum. J Geophys Res Ocean 109:1–15

    Article  Google Scholar 

  • Eyles N, Mullins HT, Hine AC (1990) Thick and fast: sedimentation in a Pleistocene fiord lake of British Columbia, Canada. Geology 18:1153–1157

    Article  Google Scholar 

  • Fedele J, García MH (2009) Laboratory experiments on the formation of subaqueous depositional gullies by turbidity currents. Mar Geol 258:48–59

    Article  Google Scholar 

  • Gamberi F, Marani M (2007) Downstream evolution of the Stromboli slope valley (southeastern Tyrrhenian Sea). Mar Geol 243:180–199

    Article  Google Scholar 

  • Gao Z, He Y, Li J, Li W, Luo S, Wang Z (1997) The first internal-tide deposits found in China. Chin Sci Bull 42:1113–1116

    Google Scholar 

  • Garrett C (2003) Ocean Science: enhanced: internal tides and ocean mixing. Science 301:1858–1859

    Google Scholar 

  • Garrett C, Kunze E (2007) Internal tide generation in the deep ocean. Ann Rev Fluid Mech 39:57–87

    Article  Google Scholar 

  • Hall P, Davies AM (2004) Modelling tidally induced sediment-transport paths over the northwest European shelf: the influence of sea-level reduction. Ocean Dyn 54:126–141

    Article  Google Scholar 

  • Hayward AB (1984) Hemipelagic chalks in a clastic submarine fan sequence: Miocene SW Turkey. Geol Soci Lond Spec Publ 15:453–467

    Article  Google Scholar 

  • He Y, Gao Z (1999) The characteristics and recognition of internal-tide and internal-wave deposits. Chin Sci Bull 44:582

    Google Scholar 

  • He Y, Gao Z, Luo S, Peng D, Wang H, Luo J (2007) Discovery of internal-tide deposits from the third member of Pingliang Formation in Longxian area, Shaanxi Province Shiyou Tianranqi Xuebao. J Oil Gas Technol 29:28–33

    Google Scholar 

  • He Y, Gao Z, Luo J, Luo S, Liu X (2008) Characteristics of internal-wave and internal-tide deposits and their hydrocarbon potential. Petrol Sci 5:37–44

    Article  Google Scholar 

  • Heezen BC, Hollister C (1964) Deep-sea current evidence from abyssal sediments. Mar Geol 1:141–174

    Article  Google Scholar 

  • Heezen BC, Rawson M (1977) Visual observations of contemporary current erosion and tectonic deformation on the Cocos Ridge crest. Mar Geol 23:173–196

    Article  Google Scholar 

  • Heezen BC, Hollister CD, Ruddiman WF (1966) Shaping of the continental rise by deep geostrophic contour currents. Science 152:502–508

    Article  Google Scholar 

  • Hein FJ, Syvitski JPM (1992) Sedimentary environments and facies in an arctic basin, Itirbilung Fiord, Baffin Island, Canada. Sediment Geol 81:17–45

    Article  Google Scholar 

  • Hotchkiss FS, Wunsch C (1982) Internal waves in Hudson Canyon with possible geological implications. Deep Sea Res 29:415–442

    Article  Google Scholar 

  • Huthnance JM (1989) Internal tides and waves near the continental shelf edge. Geophys Astrophys Fluid Dyn 48:81–106

    Article  Google Scholar 

  • Inall M, Cottier F, Griffiths C, Rippeth T (2004) Sill dynamics and energy transformation in a jet fjord. Ocean Dyn 54:307–314

    Article  Google Scholar 

  • Kane IA, Kneller BC, Dykstra M, Kassem A, McCaffrey WD (2007) Anatomy of a submarine channel–levee: an example from Upper Cretaceous slope sediments, Rosario Formation, Baja California, Mexico. Mar Petrol Geol (online)

    Google Scholar 

  • Kane IA, Dykstra ML, Kneller BC, Tremblay S, McCaffrey W (2009) Architecture of a coarse-grained channel-levee system: the Rosario Formation, Baja California, Mexico. Sedimentology 56:2207–2234

    Article  Google Scholar 

  • Klein GD (1975) Resedimented pelagic carbonate and volcaniclastic sediments and sedimentary structures in Leg 30 DSDP cores from the western Equatorial Pacific. Geology 3:39–42

    Article  Google Scholar 

  • Kneller BC (1995) Beyond the turbidite paradigm: physical models for deposition of turbidites and their implications for reservoir prediction. In: Marley AJ, Prosser DJ (eds) Characterisation of deep marine clastic systems. Geol Soc Lond Spec Paper 94:29–46

    Google Scholar 

  • Kneller BC, Branney MJ (1995) Sustained high-density turbidity currents and the deposition of thick massive sands. Sedimentology 42:607–616

    Article  Google Scholar 

  • Kneller BC, McCaffrey WD (1999) Depositional effects of flow non-uniformity and stratification within turbidity currents approaching a bounding slope: deflection, reflection, and facies variation. J Sediment Res 69:980–991

    Google Scholar 

  • Kneller BC, McCaffrey WD (2003) The interpretation of vertical sequences in turbidite beds: the influence of longitudinal flow structure. J Sediment Res 73:706–713

    Article  Google Scholar 

  • Kneller BC, Edwards D, McCaffrey W, Moore R (1991) Oblique reflection of turbidity currents. Geology 19:250–252

    Article  Google Scholar 

  • Kneller BC, Bennett SJ, McCaffrey WD (1997) Velocity and turbulence structure of density currents and internal solitary waves: potential sediment transport and the formation of wave ripples in deep water. Sediment Geol 112:235–250

    Article  Google Scholar 

  • Kvale EP (2006) The origin of neap–spring tidal cycles. Mar Geol 235:5–18

    Article  Google Scholar 

  • LaFond EC (1962) Internal waves: part I. In: Hill MN (ed) The sea: ideas and observation on progress in the study of the seas, vol 1. Wiley, New York, 864 p

    Google Scholar 

  • Laird MG (1972) Sedimentology of the Greenland Group of the Paparoa Range, west coast, South Island, NewZealand. N Z J Geol Geophys 15:372–393

    Google Scholar 

  • Lambeck K, Chappell J (2001) Sea level change through the last glacial cycle. Science 292:679–686

    Article  Google Scholar 

  • Legg S (2004) Internal tides generated on a corrugated continental slope. Part I: cross-slope barotropic forcing. J Phys Oceanogr 34:156–173

    Article  Google Scholar 

  • Legg S, Adcroft A (2003) Internal wave breaking at concave and convex continental slopes. J Phys Oceanogr 33:2224–2246

    Article  Google Scholar 

  • Lonsdale P (1976) Abyssal circulation of the southeastern Pacific and some geological implications. J Geophys Res 81:1163–1176

    Article  Google Scholar 

  • Lonsdale P, Malfait B (1974) Abyssal dunes of foraminiferal sand on the Carnegie Ridge. Geol Soc Am Bull 85:1697–1712

    Article  Google Scholar 

  • Lonsdale P, Normark WR, Newman WA (1972) Sedimentation and erosion on Horizon Guyot. Geol Soc Am Bull 83:289–316

    Article  Google Scholar 

  • Mas V, Mulder T, Dennielou B, Schmidt S, Khripounoff A, Savoye B (2010) Multiscale spatio-temporal variability of sedimentary deposits in the Var turbidite system (North-Western Mediterranean Sea). Mar Geol 275:37–52

    Article  Google Scholar 

  • May JA, Warme JE, Slater RA (1983) Role of submarine canyons on shelfbreak erosion and sedimentation: modern and ancient examples. In: The shelfbreak: critical interface on continental margins. SEPM Spec Publ 33:315–332

    Google Scholar 

  • McCave IN, Lonsdale PF, Hollister CD, Gardner WD (1980) Sediment transport over the Hatton and Gardar contourite drifts. J Sediment Petrol 50:1049–1062

    Google Scholar 

  • Mitchell NC, Huthnance JM (2008) Oceanographic currents and the convexity of the uppermost continental slope. J Sediment Res 78:29–44

    Article  Google Scholar 

  • Morris WR (1992) The depositional framework, paleogeography and tectonic development of the Late Cretaceous through Paleocene Peninsular Range forearc basin in the Rosario Embayment, Baja California, Mexico. Ph.D. dissertation, University of California, Santa Barbara, 240 p

    Google Scholar 

  • Morris SA, Alexander J (2003) Changes in flow direction at a point caused by obstacles during passage of a density current. J Sediment Res 73:621–629

    Article  Google Scholar 

  • Morris WR, Busby-Spera CJ (1988) Sedimentologic evolution of a submarine canyon in a forearc basin, Late Cretaceous Rosario Formation, San Carlos, Mexico. Bull Am Assoc Petrol Geol 72:717–737

    Google Scholar 

  • Moum JN, Caldwell DR, Nash JD, Gunderson GD (2002) Observations of boundary mixing over the continental slope. J Phys Oceanogr 32:2113–2130

    Article  Google Scholar 

  • Mulder T, Migeon S, Savoye B, Faugères JC (2001) Inversely graded turbidite sequences in the deep Mediterranean: a record of deposits from flood-generated turbidity currents? Geo-Mar Lett 21:86–93

    Article  Google Scholar 

  • Mulder T, Migeon S, Savoye B, Faugères JC (2002) Reply to discussion by Shanmugam on Mulder et al. (2001, Geo-Mar Lett 21:86–93) Inversely graded turbidite sequences in the deep Mediterranean. A record of deposits from flood-generated turbidity currents? Geo-Mar Lett 22:112–120

    Article  Google Scholar 

  • Mulder T, Lecroart P, Hanquiez V, Marches E, Gonthier E, Guedes JC, Thiébot E, Jaaidi B, Kenyon N, Voisset M, Perez C, Sayago M, Fuchey Y, Bujan S (2006) The western part of the Gulf of Cadiz: contour currents and turbidity currents interactions. Geo-Mar Lett 26:31–34

    Article  Google Scholar 

  • Mulder T, Zaragosi S, Garlan T, Mavel J, Cremer M, Sottolichio A (2009) Deep-sea currents related to internal tides in Canyons of the Bay of Biscay, implications on the behaviour of submarine Canyons. In: Pascucci V, Andreucci S (eds) 27th IAS meeting, Alghero, Italy, pp 616

    Google Scholar 

  • Munk W, Wunsch C (1998) Abyssal recipes II: energetics of tidal and wind mixing. Deep Sea Res Part I: Oceanogr Res Pap 45:1977–2010

    Article  Google Scholar 

  • Nakajima T (2006) Hyperpycnites deposited 700 km away from river mouths in the Central Japan Sea. J Sediment Res 76:60–73

    Article  Google Scholar 

  • Nash JD, Kunze E, Lee CM, Sanford TB (2006) Structure of the baroclinic tide generated at Kaena Ridge, Hawaii. J Phys Oceanogr 36:1123–1135

    Article  Google Scholar 

  • Neill S, Scourse J, Uehara K (2010) Evolution of bed shear stress distribution over the northwest European shelf seas during the last 12,000 years. Ocean Dyn 60:1139–1156

    Article  Google Scholar 

  • Nelson C, Mutti E, Ricci Lucchi F (1977) Upper Cretaceous resedimented conglomerates at Wheeler Gorge, California: description and field guide discussion. J Sediment Petrol 47:926–934

    Google Scholar 

  • Noble M, Cacchione DA, Schwab WC (1988) Observations of strong Mid-Pacific internal tides above Horizon Guyot. J Phys Oceanogr 18:1300–1306

    Article  Google Scholar 

  • Okada H, Ohta S (1993) Photographic evidence of variable bottom-current activity in the Suruga and Sagami Bays, central Japan. Sediment Geol 82:221–237

    Article  Google Scholar 

  • Özsoy E, Di Iorio D, Gregg MC, Backhaus JO (2001) Mixing in the Bosphorus Strait and the Black Sea continental shelf: observations and a model of the dense water outflow. J Mar Sys 31:99–135

    Article  Google Scholar 

  • Posamentier HW, Walker RG (2006) Deep-water turbidites and submarine fans. In: Posamentier HW, Walker RG (eds) Facies models revisited. SEPM Spec Publ 84:399–520

    Google Scholar 

  • Rebesco M, Camerlenghi A, Van Loon AJ (2008) Contourite research: a field in full development (Chapter 1). In: Rebesco M, Camerlenghi A (eds) Developments in sedimentology, vol 60. Elsevier, Amsterdam/Oxford, pp 3–10

    Google Scholar 

  • Robertson R (2005) Baroclinic and barotropic tides in the Weddell Sea. Antarct Sci 17:461–474

    Article  Google Scholar 

  • Rudnick DL, Boyd TJ, Brainard RE, Carter GS, Egbert GD, Gregg MC, Holloway PE, Klymak JM, Kunze E, Lee CM, Levine MD, Luther DS, Martin JP, Merrifield MA, Moum JN, Nash JD, Pinkel R, Rainville L, Sanford TB (2003) From tides to mixing along the Hawaiian Ridge. Science 301:355–357

    Article  Google Scholar 

  • Shanmugam G (2003) Deep-marine tidal bottom currents and their reworked sands in modern and ancient submarine canyons. Mar Petrol Geol 20:471–491

    Article  Google Scholar 

  • Shanmugam G (2008) Deep-water bottom currents and their deposits (Chap. 5). In: Rebesco M, Camerlenghi A (eds) Developments in sedimentology, vol 60. Elsevier, Amsterdam/Oxford, pp 59–81

    Google Scholar 

  • Shanmugam G, Spalding TD, Rofheart DH (1993) Traction structures in deep-marine, bottom-current-reworked sands in the Pliocene and Pleistocene, Gulf of Mexico. Geology 21:929–932

    Article  Google Scholar 

  • Shanmugam G, Shrivastava SK, Das B (2009) Sandy debrites and tidalites of Pliocene reservoir sands in upper-slope canyon environments, Offshore Krishna-Godavari Basin (India): implications. J Sediment Res 79:736–756

    Article  Google Scholar 

  • Shepard FP (1976) Tidal components of currents in submarine canyons. J Geol 84:343–350

    Article  Google Scholar 

  • Shepard FP, Emery KO (1973) Congo submarine canyon and Fan Valley. Am Assoc Petrol Geol Bull 57:1679–1691

    Google Scholar 

  • Shepard FP, Marshall NF (1973) Currents along floors of submarine canyons. Am Assoc Petrol Geol Bul 57:244–264

    Google Scholar 

  • Shepard FP, Marshall NF, McLoughlin PA, Sullivan GG (1979) Currents in submarine canyons and other sea valleys. American Association of Petroleum Geologists, Tulsa, 173 p

    Google Scholar 

  • Sherwin TJ, Vlasenko VI, Stashchuk N, Jeans DRG, Jones B (2002) Along-slope generation as an explanation for some unusually large internal tides. Deep Sea Res 49:1787–1799

    Article  Google Scholar 

  • St. Laurent L, Garrett C (2002) The role of internal tides in mixing the deep ocean. J Phys Oceanogr 32:2882–2899

    Article  Google Scholar 

  • Stashchuk N, Inall M, Vlasenko V (2007) Analysis of supercritical stratified tidal flow in a Scottish Fjord. J Phy Oceanogr 37:1793–1810

    Article  Google Scholar 

  • Stigebrandt A (1976) Vertical diffusion driven by internal waves in a Sill Fjord. J Phys Oceanogr 6:486–495

    Article  Google Scholar 

  • Stigebrandt A (1979) Observational evidence for vertical diffusion driven by internal waves of tidal origin in the Oslofjord. J Phys Oceanogr 9:435–444

    Article  Google Scholar 

  • Stow DAV, Hernandez-Molina FJ, Llave E, Sayago-Gil M, Diaz del Rio V, Branson A (2009) Bedform-velocity matrix: the estimation of bottom current velocity from bedform observations. Geology 37:327–333

    Article  Google Scholar 

  • Thorpe SA (1992) Thermal fronts caused by internal gravity waves reflecting from a slope. J Phy Oceanogr 22:105–108

    Article  Google Scholar 

  • Uehara K, Scourse JD, Horsburgh KJ, Lambeck K, Purcell AP (2006) Tidal evolution of the northwest European shelf seas from the Last Glacial Maximum to the present. J Geophys Res 111:C0902

    Article  Google Scholar 

  • Vidal VM, Vidal FV, Pérez-Molero JM (1992) Collision of a loop current anticyclonic ring against the continental shelf slope of the western Gulf of Mexico. J Geophys Res 97:2155–2172

    Article  Google Scholar 

  • Visser MJ (1980) Neap-spring cycles reflected in Holocene subtidal large-scale bedform deposits: A preliminary note: Geology 8:543–546

    Google Scholar 

  • Vlasenko V, Stashchuk N, Hutter K (2002) Water exchange in fjords induced by tidally generated internal lee waves. Dyn Atmos Ocean 35:63–89

    Article  Google Scholar 

  • Walker RG (1985) Mudstones and thin-bedded turbidites associated with the Upper Cretaceous Wheeler Gorge conglomerates, California: a possible channel-levee complex. J Sediment Petrol 55:279–290

    Google Scholar 

  • Xu JP, Wong FL, Kvitek R, Smith DP, Paull CK (2008) Sandwave migration in Monterey Submarine Canyon, Central California. Mar Geol 248:193–212

    Article  Google Scholar 

  • Zhenzhong G, Eriksson KA (1991) Internal tide deposits in an Ordovician submarine channel: previously unrecognized facies? Geology 19:734–737

    Article  Google Scholar 

  • Zhenzhong G, Eriksson KA, Youbin H, Shunshe L, Jianhua G (1998) Deep-water traction current deposits. Science Press/VSP, New York/Utrecht, 128 p

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mason Dykstra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Dykstra, M. (2012). Deep-Water Tidal Sedimentology. In: Davis Jr., R., Dalrymple, R. (eds) Principles of Tidal Sedimentology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0123-6_14

Download citation

Publish with us

Policies and ethics