Skip to main content

Shallow-Marine Tidal Deposits

  • Chapter
  • First Online:
Book cover Principles of Tidal Sedimentology

Abstract

Shallow-marine tidal deposits form on open shelves, and more specifically in open-mouthed embayments and semi-enclosed epicontinental seas, where the oceanic tide is amplified by resonance. They are also present in straits and seaways where the tidal currents are accelerated by flow constriction. Complex interactions of the tide with the seafloor and coastal topography bring about tidal asymmetry, generating tidal-transport pathways with net, unidirectional transport of sediment over long distances. Tidal currents are commonly capable of resuspending mud in shallow-marine settings, but little is known about the role of tidal currents in the deposition of muddy deposits in the offshore domain. The best-known shelf tidal deposits are sandy and bioclastic transgressive ‘lags’ that mantle flooding surfaces. These lags are generally thin, but can reach thicknesses of 10–30 m in tidal-current ridges and sand sheets. These deposits are composed of dominantly well-sorted, cross-bedded sands with good reservoir properties. Careful architectural analysis allows the distinction between the deposits of compound dunes, tidal-current ridges and migrating sand sheets. The occurrence of shallow-marine tidal deposits is sensitive to changes in sea level; paleotidal modeling has great potential to help understanding their occurrence in space and time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen JRL (1980) Sand waves; a model of origin and internal structure. Sediment Geol 26:281–328

    Article  Google Scholar 

  • Allen JRL (1982) Sedimentary structures: their character and physical basis, Developments in sedimentology 30A and 30B. Elsevier, Amsterdam

    Google Scholar 

  • Allen PA (1997) Earth surface processes. Wiley-Blackwell, Oxford

    Book  Google Scholar 

  • Allen PA, Homewood P (1984) Evolution and mechanics of a Miocene tidal sandwave. Sedimentology 31:63–81

    Article  Google Scholar 

  • Allen PA, Mange-Rajetzky M, Matter A, Homewood P (1985) Dynamic palaeogeography of the open Burdigalian seaway, Swiss Molasse basin. Eclogae Geol Helv 78:351–381

    Google Scholar 

  • Anastas A, Dalrymple RW, James NP, Nelson CS (1997) Cross-stratified calcarenites from New Zealand; subaqueous dunes in a cool-water, Oligo-Miocene seaway. Sedimentology 44:869–891

    Article  Google Scholar 

  • Anastas A, Dalrymple RW, James NP, Nelson CS (2006) Lithofacies and dynamics of a cool-water carbonate seaway; mid-Tertiary, Te Kuiti Group, New Zealand. In: Pedley HM, Carannante G (eds) Cool-water carbonates: depositional systems and palaeoenvironmental controls. Geol Soc Lond Spec Publ 255:245–268

    Google Scholar 

  • André JP, Biagi R, Moguedet G, Buffard R, Clément G, Redois F, Baloge PA (2003) Mixed siliciclastic–cool-water carbonate deposits over a tide-dominated epeiric platform: the Faluns of l’Anjou formation (Miocene, W. France). Ann Paleontol 89:113–123

    Article  Google Scholar 

  • André JP, Barthet Y, Ferrandini M, Ferrandini J, Reynaud JY, Tessier B (2011) The Bonifacio Formation (Miocene of Corsica): transition from a wave- to tide-dominated coastal system in mixed carbonate-siliciclastic setting. Bull Soc Geol France 182:221–230

    Google Scholar 

  • Androsov AA, Kagan BA, Romanenkov DA, Voltzinger NE (2002) Numerical modeling of barotropic tidal dynamics in the strait of Messina. Adv Water Res 25:401–415

    Article  Google Scholar 

  • Archer AW, Hubbard MS (2003) Highest tides of the world. In: Chan MA, Archer AW (eds) Geol Soc Am Spec Paper 370:151–173

    Google Scholar 

  • Ashley GM (1990) Classification of large-scale subaqueous bedforms: a new look at an old problem. J Sediment Petrol 60:160–172

    Google Scholar 

  • Bassant P, Van Buchem FHP, Strasser A, Gorur N (2005) The stratigraphic architecture and evolution of the Burdigalian carbonate-siliciclastic sedimentary systems of the Mut Basin, Turkey. Sediment Geol 173:187–232

    Article  Google Scholar 

  • Bastos AC, Collins M, Kenyon NH (2003) Morphology and internal structure of sand shoals and sandbanks off the Dorset coast, English Channel. Sedimentology 50:1105–1122

    Article  Google Scholar 

  • Belderson RH, Johnson MA, Kenyon NH (1982) Bedforms. In: Stride AH (ed) Offshore tidal sands: processes and deposits. Chapman & Hall, London

    Google Scholar 

  • Berné S, Auffret J-P, Walker P (1988) Internal structure of subtidal sandwaves revealed by high-resolution seismic reflection. Sedimentology 35:5–20

    Article  Google Scholar 

  • Berné S, Bourillet J-F, Durand J, Lericolais G (1989) Les Dunes subtidales geantes de Surtainville (Manche ouest). Bull Cen Rech Expl Elf-Aquit 13:395–415

    Google Scholar 

  • Berné S, Durand J, Weber O (1991) Architecture of modern subtidal dunes (sand waves), Bay of Bourgneuf, France. Concepts Sedimentol Paleontol 3:245–260

    Google Scholar 

  • Berné S, Trentesaux A, Stolk A, Missiaen T, De Batist M (1994) Architecture and long term evolution of a tidal sandbank; the Middelkerke Bank (southern North Sea). Mar Geol 121:57–72

    Article  Google Scholar 

  • Berné S, Lericolais G, Marsset T, Bourillet J-F, de Batist M (1998) Erosional shelf sand ridges and lowstand shorefaces: examples from tide and wave dominated environments of France. J Sediment Res 68:540–555

    Google Scholar 

  • Berné S, Vagner P, Guichard F, Lericolais G, Liu Z, Trentesaux A, Yin P, Yi HI (2002) Pleistocene forced regressions and tidal sand ridges in the East China Sea. Mar Geol 188:293–315

    Article  Google Scholar 

  • Besson D (2005) Architecture du bassin rhodano-provençal miocène (Alpes, SE France): relations entre déformation, physiographie et sédimentation dans un bassin molassique d’avant-pays. Ph.D. thesis, Mines Paris Tech

    Google Scholar 

  • Besson D, Parize O, Rubino J-L, Aguilar J-P, Aubry M-P, Beaudoin B, Berggren WA, Clauzon G, Crumeyrolle P, Dexcoté Y, Fiet N, Iaccarino S, Jimenez-Moreno G, Laporte-Galaa C, Michaux J, von Salis K, Suc J-P, Reynaud J-Y, Wernli R (2005) Un réseau fluviatile d’âge Burdigalien terminal dans le Sud-Est de la France: remplissage, extension, âge, implications. CR Géosci 337:1045–1054

    Article  Google Scholar 

  • Bieg U (2005) Palaeoceanographic modeling in global and regional scale: an example from the Burdigalian Seaway Upper Marine Molasse (Early Miocene). Ph.D. thesis, University of Tübingen

    Google Scholar 

  • Blackwood S, Yoshida S, Steel R, Dalrymple R, Martinius A, Gawthorpe R (2004) Comparative studies of modern, Quaternary and ancient seaways; building depositional models for hydrocarbon exploration and production; a review. AAPG Abstr 13:14–15

    Google Scholar 

  • Bourret A, Devenon J-L, Chevalier C (2008) Tidal influence on the hydrodynamics of the French Guiana continental shelf. Cont Shelf Res 28:951–961

    Article  Google Scholar 

  • Bouysse P, Horn R, Lapierre H, Le Lann F (1976) Etude des grands bancs de sable du Sud-est de la mer Celtique. Mar Geol 20:251–275

    Article  Google Scholar 

  • Bouysse P, Le lann F, Scolari G (1979) Les sediments superficiels des Approches occidentales de la Manche. Mar Geol 29:107–135

    Article  Google Scholar 

  • Brandano M, Jadoul F, Lanfranchi A, Tomassetti L, Berra F, Ferrandini M, Ferrandini J (2009) Stratigraphic architeture of mixed carbonate-siliciclastic system in the Bonifacio Basin (Early-Middle Miocene, South Corsica). Excursion guidebook, 27th IAS meeting of sedimentology, Alghero, 20–24 Sept 2009, pp 299–313

    Google Scholar 

  • Brew DS (1996) Late Weichselian to early Holocene subaqueous dune formation and burial off the North Sea Northumberland coast. Mar Geol 134:203–211

    Article  Google Scholar 

  • Carling PA (1999) Subaqueous gravel dunes. J Sediment Res 69:534–545

    Google Scholar 

  • Caston VND (1972) Linear sand banks in the southern North Sea. Sedimentology 18:63–78

    Article  Google Scholar 

  • Caston VND (1981) Potential gain and loss of sand by some sand banks in the Southern Bight of the North Sea. Mar Geol 41:239–250

    Article  Google Scholar 

  • Colella A (1990) Active tidal sand waves at bathyal depths observed from submersible and bathysphere (Messina Strait, southern Italy). In: 13th IAS congress, Abstract, Nottingham, pp98–99

    Google Scholar 

  • Dalrymple RW (1984) Morphology and internal structure of sand waves in the Bay of Fundy. Sedimentology 31:365–382

    Article  Google Scholar 

  • Dalrymple RW (2010a) Introduction to siliciclastic facies models. In: James NP, Dalrymple RW (eds) Facies models 4. Geological Association of Canada, St John’s, pp 59–72

    Google Scholar 

  • Dalrymple RW (2010b) Tidal depositional systems. In: James NP, Dalrymple RW (eds) Facies models 4. Geological Association of Canada, St John’s, pp 201–231

    Google Scholar 

  • Dalrymple RW, Rhodes RN (1995) Estuarine dunes and bars. In: Perillo GME (ed) Geomorphology and sedimentology of estuaries. Elsevier, Amsterdam

    Google Scholar 

  • Dalrymple RW, Zaitlin BA (1994) High-resolution sequence stratigraphy of a complex, incised valley succession, the Cobequid Bay- Salmon River estuary, Bay of Fundy, Canada. Sedimentology 41:1069–1091

    Article  Google Scholar 

  • Davis RA, Balson PS (1992) Stratigraphy of a North Sea tidal sand ridge. J Sediment Petrol 62:116–121

    Google Scholar 

  • Davis RA, Klay J, Jewell P (1993) Sedimentology and stratigraphy of tidal sand ridges, Southwest Florida inner shelf. J Sediment Petrol 63:91–104

    Google Scholar 

  • De Batist M, Tessier B, Marsset T, Reynaud J-Y, Dimitropoulos D, Llopart X, Proust J-N, Berné S, Chamley H (1996) Analysis by geosonic recordings of the large and small-scale internal structure of the Bassure de Baas sand in the English Channel. In: Heyse I, De Moor G (eds) MAST-II-Starfish Project MAS2-CT92-0029. Final report, Chap. 15

    Google Scholar 

  • De Boer PL, Van Gelder A, Nio SD (1988) Tide-influenced sedimentary environments and facies. Reidel Publishing, Dordrecht

    Google Scholar 

  • Descote PY (2010) Relations architecturales, faciologiques et diagénétiques des carbonates bioclastiques du bassin rhodano-provençal (SE France). Ph.D. thesis, Mines Paris-Tech

    Google Scholar 

  • D’Olier B (1981) Sedimentary events during Flandrian sea-level rise in the south-west corner of the North Sea. In: Nio SD, Schuttenhelm RTE, Van Weering TjCE (eds) Holocene marine sedimentation in the North Sea basin. IAS Spec Publ 5:221–227

    Google Scholar 

  • Dyer KR, Huntley DA (1999) The origin, classification and modelling of sand banks and ridges. Cont Shelf Res 19:1285–1330

    Article  Google Scholar 

  • Ekdale AA, Bromley RG, Pemberton SG (1984) Ichnology: the use of trace fossils in sedimentology and stratigraphy. SEPM Short Course Notes 15

    Google Scholar 

  • Ericksen MC, Masson DS, Slingerland R, Swetland DW (1990) Numerical simulation of circulation and sediment transport in the late Devonian Catskill Sea. In: Cross TA (ed) Quantitative dynamic stratigraphy. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Fenster MS, Fitzgerald DM, Bohlen WF, Lewis RS, Baldwin CT (1990) Stability of giant sand waves in eastern Long Island Sound, U.S.A. Mar Geol 91:207–225

    Article  Google Scholar 

  • Fleming RH, Revelle R (1939) Physical processes in the ocean. In: Trask PD (ed) Recent marine sediments. A symposium. Thomas Murby Publishing, London

    Google Scholar 

  • Flemming BW (1988) Pseudo-tidal sedimentation in a non-tidal shelf environment; Southeast African continental margin. In: De Boer PL, Van Gelder A, Nio SD (eds) Tide-influenced sedimentary environments and facies. Reidel Publishing, Dordrecht

    Google Scholar 

  • Flemming BW (1980) Sand transport and bedform patterns on the continental shelf between Durban and Port Elizabeth (Southeast African continental margin). Sediment Geol 26:179–205

    Article  Google Scholar 

  • Gabioux M, Vinzon SB, Palva AM (2005) Tidal propagation over fluid mud layers on the Amazon shelf. Cont Shelf Res 25:113–125

    Article  Google Scholar 

  • Gao S, Collins MB, Lanckneus J, De Moor G, Van Lancker V (1994) Grain size trends associated with net sediment transport patterns; an example from the Belgian continental shelf. Mar Geol 121:171–185

    Article  Google Scholar 

  • Greenberg DA (1979) A numerical model investigation of tidal phenomena in the Bay of Fundy and Gulf of Maine. Mar Geol 2:161–187

    Google Scholar 

  • Grochowski NTL, Collins MB, Boxall SR, Salomon J-C (1993) Sediment transport predictions for the English Channel, using numerical models. J Geol Soc Lond 150:683–695

    Article  Google Scholar 

  • Harris PT (1988) Sediments, bedforms, and bedload transport pathways on the continental shelf adjacent to Torres Strait, Australia – Papua New Guinea. Cont Shelf Res 8:979–1003

    Article  Google Scholar 

  • Harris PT, Pattiaratchi CB, Collins MB, Dalrymple RW (1995) What is a bedload parting? In: Flemming BW, Bartoloma A (eds) Tidal signatures in modern and ancient sediments. IAS Spec Publ 24 :2–10

    Google Scholar 

  • Heathershaw AD, New AL, Edwards PD (1987) Internal tides and sediment transport at the shelf break in the Celtic Sea. Cont Shelf Res 7:485–517

    Article  Google Scholar 

  • Hein FJ, Robb GA, Wolberg AC, Longstaffe FJ (1991) Facies descriptions and associations in ancient reworked (transgressive) shelf sandstones; Cambrian and Cretaceous examples. Sedimentology 38:405–431

    Article  Google Scholar 

  • Hoppie BW (1996) The influence of relative sea level on nearshore sedimentary processes in a transform margin basin; the Miocene Cuyama Basin, California. AAPG Absr 5:67

    Google Scholar 

  • Homewood P, Allen PA (1981) Wave-, tide- and current-­controlled sandbodies of Miocene Molasse, western Switzerland. Am Assoc Petrol Geol Bull 65:2534–2545

    Google Scholar 

  • Houbolt JJHC (1968) Recent sediments in the Southern Bight of the North Sea. Geol Mijn 47:245–273

    Google Scholar 

  • Houbolt JJHC (1982) A comparison of recent shallow marine tidal sand ridges with Miocene sand ridges in Belgium. In: Scrutton RA, Talwani M (eds) The ocean floor, Bruce Heezen commemorative volume. Wiley, Chichester

    Google Scholar 

  • Houthuys R, Gullentops F (1988a) The Vlierzele Sands (Eocene, Belgium): a tidal ridge system. In: de Boer PL, van Gelder A, Nio SD (eds) Tide-influenced sedimentary environments and facies. Reidel Publishing, Dordrecht

    Google Scholar 

  • Houthuys R, Gullentops F (1988b) Tidal transverse bars building up a longitudinal sand body (middle Eocene, Belgium). In: de Boer PL, van Gelder A, Nio SD (eds) Tide-influenced sedimentary environments and facies. Reidel Publishing, Dordrecht

    Google Scholar 

  • Houthuys R, Trentesaux A, De Wolf P (1994) Storm influences on a tidal sandbank’s surface (Middelkerke Bank, southern North Sea). Mar Geol 121:23–41

    Article  Google Scholar 

  • Howarth MJ (1982) Tidal currents of the continental shelf. In: Stride AH (ed) Offshore tidal sands: processes and deposits. Chapman & Hall, New York

    Google Scholar 

  • Howarth MJ, Huthnance JM (1984) Tidal and residual currents around a Norfolk sandbank. Estuarine Coast Shelf Sci 19:105–117

    Article  Google Scholar 

  • Hulscher SJMH (1996) Tidal-induced large-scale regular bedform patterns in a three-dimensional shallow water model. J Geophys Res 101(C9):20727–20744

    Article  Google Scholar 

  • Hülsemann J (1955) Grossrippeln und Schrägsrichtungengs-Gefüge im Nordsee Watt un in der Molasse. Senck Leth 36:359–388

    Google Scholar 

  • Huthnance JM (1973) Tidal current asymmetries over the Norfolk sandbanks. Estuarine Coast Mar Sci 1:89–99

    Article  Google Scholar 

  • Huthnance JM (1982a) On one mechanism forming linear sand banks. Estuarine Coast Mar Sci 14:79–99

    Article  Google Scholar 

  • Huthnance JM (1982b) On the formation of sand banks of finite extent. Estuarine Coast Mar Sci 15:277–299

    Article  Google Scholar 

  • James NP (1997) The cool-water carbonate depositional realm. In: James NP, Clarke JAD (eds) Cool-water carbonates. SEPM Spec Publ 56:1–20

    Google Scholar 

  • Jin JH, Chough SK (2002) Erosional shelf ridges in the mid-eastern Yellow Sea. Geo-Mar Lett 21:219–225

    Article  Google Scholar 

  • Johnson HD (1977) Shallow marine sand bar sequences; an example from the late Precambrian of North Norway. Sedimentology 24:245–270

    Article  Google Scholar 

  • Johnson MA, Kenyon NH, Belderson RH, Stride AH (1982) Sand transport. In: Stride AH (ed) Offshore tidal sands, processes and deposits. Chapman & Hall, London

    Google Scholar 

  • Jung WY, Suk BC, Min GH, Lee YK (1998) Sedimentary structure and origin of a mud-cored pseudo-tidal sand ridge, eastern Yellow Sea, Korea. Mar Geol 151:73–88

    Article  Google Scholar 

  • Kamp PJJ, Harmsen FJ, Nelson CS, Boyle SF (1988) Barnacle-dominated limestone with giant cross-beds in a non-tropical, tide-swept, Pliocene forearc seaway, Hawke’s Bay, New Zealand. Sediment Geol 60:173–195

    Article  Google Scholar 

  • Kenyon NH, Stride AH (1970) The tide-swept continental shelf sediments between the Shetland isles and France. Sedimentology 14:159–173

    Article  Google Scholar 

  • Kenyon NH, Belderson RH, Stride AH, Johnson MA (1981) Offshore tidal sand banks as indicators of net sand transport and as potential deposits. In: Nio SD, Schuttenhelm RTE, Van Weering TjCE (eds) Holocene marine sedimentation in the North Sea basin. IAS Spec Publ 5:257–268

    Google Scholar 

  • Laban C, Schuttenhelm RTE (1981) Some new evidence on the origin of the Zealand Ridges. In: Nio SD, Schuttenhelm RTE, Van Weering TjCE (eds) Holocene marine sedimentation in the North Sea basin. IAS Spec Publ 5:239–245

    Google Scholar 

  • Lanckneus J, De Moor G, Stolk A (1994) Environmental setting, morphology and volumetric evolution of the Middelkerke Bank (southern North Sea). Mar Geol 121:1–21

    Article  Google Scholar 

  • Lanier WP, Feldman HR, Archer AW (1993) Tidal sedimentation from a fluvial to estuarine transition, Douglas Group, Missourian-Virgilian, Kansas. J Sediment Petrol 63:860–873

    Google Scholar 

  • Lapierre F (1975) Contribution a l’etude geologique et sedimentologique de la Manche orientale. Philos Trans R Soc Lond A 1975:177–187

    Article  Google Scholar 

  • Le Bot S, Trentesaux A (2004) Types of internal structure and external morphology of submarine dunes under the influence of tide and wind-driven processes (Dover Strait, northern France). Mar Geol 211:143–168

    Article  Google Scholar 

  • Legg S, Adcroft A (2003) Internal wave breaking at concave and convex continental slopes. J Phys Ocean 33:2224–2246

    Article  Google Scholar 

  • Lesueur J-L, Rubino J-L, Giraudmaillet M (1988) Organisation et structures internes des dépots tidaux du Miocène rhodanien. Bull Soc Geol France 6:49–65

    Google Scholar 

  • Levell BK (1980) A Late Precambrian tidal shelf deposit, the lower Sandfjord Formation, Finnmark, North Norway. Sedimentology 27:539–557

    Article  Google Scholar 

  • Liu ZX, Xia DX, Berné S, Yang WK, Marsset T, Tang YX, Bourillet J-F (1998) Tidal depositional systems of China’s continental shelf, with special reference to the eastern Bohai Sea. Mar Geol 145:225–268

    Article  Google Scholar 

  • Liu Z, Berné S, Saito Y, Yu H, Trentesaux A, Uehara K, Yin P, Liu JP, Li C, Hu G, Wang X (2007) Internal architecture and mobility of tidal sand ridges in the East China Sea. Cont Shelf Res 27:1820–1834

    Article  Google Scholar 

  • Longhitano SG, Nemec W (2005) Statistical analysis of bed-thickness variation in a Tortonian succession of biocalcarenitic tidal dunes, Amantea Basin, Calabria, southern Italy. Sediment Geol 179:195–224

    Article  Google Scholar 

  • MacEachern JA, Bann KL, Pemberton SG, Gingras MK (2005) The ichnofacies paradigm: high-resolution paleoenvironmental interpretation of the rock record. In: MacEachern JA, Bann KL, Gingras MK, Pemberton SG (eds) Applied ichnology. SEPM Short Course Notes 52:27–64

    Google Scholar 

  • Malikides M, Harris PT, Jenkins C, Keene J (1988) Carbonate sandwaves in the Bass Strait. Aust J Earth Sci 35:303–311

    Article  Google Scholar 

  • Martel AT, Allen PA, Slingerland R (1994) Use of tidal-circulation modeling in paleogeographical studies; an example from the Tertiary of the Alpine perimeter. Geology 22:925–928

    Article  Google Scholar 

  • McCave IN (1971) Sandwaves in the North Sea off the coast of Holland. Mar Geol 10:199–225

    Article  Google Scholar 

  • McCave IN, Langhorne DN (1982) Sand waves and sediment transport around the end of a tidal sand bank. Sedimentology 29:95–110

    Article  Google Scholar 

  • Mellere D, Steel R (1995) Facies architecture and sequentiality of nearshore and “shelf” sandbodies; Haystack Mountains Formation, Wyoming, USA. Sedimentology 42:551–574

    Article  Google Scholar 

  • Mellere D, Steel RJ (1996) Tidal sedimentation in the Inner Hebrides half grabens, Scotland: the Mid-Jurassic Bearreraig Sandstone Formation. In: de Batist M, Jacobs P (eds) Geology of siliciclastic shelf seas. Geol Soc Lond Spec Publ 117:49–79

    Google Scholar 

  • M’Hammdi N, Berné S, Bourillet J-F, Auffret J-P (1992) Architecture of a tidal sand bank; the Sark Bank (Channel Islands). In: Flemming BW (ed) Modern and ancient clastic tidal deposits. Courier Forschunginstitut Senckenberg 151:59–60

    Google Scholar 

  • Mitchell AJ, Ulicny D, Hampson GJ, Allison PA, Gorman GJ, Piggott MD, Wells MR, Pain CC (2010) Modeling tidal current-induced bed shear stress and palaeocirculation in an epicontinental seaway: the Bohemian Cretaceous Basin, Central Europe. Sedimentology 57:359–388

    Article  Google Scholar 

  • Mutti E, Rosell J, Allen GP, Fonnesu F, Sgavetti M (1985) The Eocene Baronia tide dominated delta-shelf system in the Ager Basin. In: Mila MD, Rosell J (eds) Excursion guidebook, 6th IAS European regional meeting, Lleida, pp 579–600

    Google Scholar 

  • Nio SD, Yang C (1991) Diagnostic attributes of clastic tidal deposits: a review. In: Smith DG, Reinson GE, Zaitlin BA, Rahmani RA (eds) Clastic tidal sedimentology. Can Soc Petrol Geol Mem 16:3–28

    Google Scholar 

  • Nelson CS, Winefield PR, Hood SD, Caron V, Pallentin A, Kamp PJJ (2003) Pliocene Te Aute limestones, New Zealand; expanding concepts for cool-water shelf carbonates. NZ J Geol Geophys 46:407–424

    Google Scholar 

  • Off T (1963) Rythmic linear sandbodies caused by tidal currents. AAPG Bull 47:324–341

    Google Scholar 

  • Pan S, MacDonald N, Williams J, O’Connor BA, Nicholson J, Davies AM (2007) Modelling the hydrodynamics of offshore sandbanks. Cont Shelf Res 27:1264–1286

    Article  Google Scholar 

  • Pantin HM, Evans CDR (1984) The Quaternary history of the central and southwestern Celtic Sea. Mar Geol 57:259–293

    Article  Google Scholar 

  • Park SC, Lee BH, Yoo DG, Lee CW (2006) Late Quaternary stratigraphy and development of tidal sand ridges in the eastern Yellow Sea. J Sed Res 76:1093–1105

    Google Scholar 

  • Pattiaratchi C, Collins M (1987) Mechanisms for linear sandbank formation and maintenance in relation to dynamical oceanographic observations. Prog Oceanograph 19:117–176

    Article  Google Scholar 

  • Pingree RD, Griffiths DK (1979) Sand transport paths around the British Isles resulting from M (sub 2) and M (sub 4) tidal interactions. J Mar Biol Assoc UK 59:497–513

    Article  Google Scholar 

  • Pingree RD, Maddock L (1979) The tidal physics of headland flows and offshore tidal bank formation. Mar Geol 32:269–289

    Article  Google Scholar 

  • Posamentier HW (2002) Ancient shelf ridges—a potentially significant component of the transgressive systems tract: case study from offshore northwest java. Am Assoc Petrol Geol Bull 86:75–106

    Google Scholar 

  • Pratt LJ (1990) The physical oceanography of sea straits. Kluwer, Dordrecht

    Google Scholar 

  • Proctor R, Carter L (1989) Tidal and sedimentary response to the late Quaternary closure and opening of Cook Strait, New Zealand; results from numerical modeling. Paleoceanography 4:167–180

    Article  Google Scholar 

  • Pugh DT (1987) Tides, surges and mean sea-level; a handbook for engineers and scientists. Wiley, Chichester

    Google Scholar 

  • Ramaswamy V, Rao PS, Rao KH, Thwin S, Roa NS, Raiker V (2004) Tidal influence on suspended sediment distribution and dispersal in the northern Andaman Sea and Gulf of Martaban. Mar Geol 208:33–42

    Article  Google Scholar 

  • Rao PS, Ramaswamy V, Thwin S (2005) Sediment texture, distribution and transport on the Ayeyarwady continental shelf, Andaman Sea. Mar Geol 216:239–247

    Article  Google Scholar 

  • Reesink AJH, Bridge JS (2007) Influence of superimposed bedforms and flow unsteadiness on the formation of cross strata in dunes and unit bars. Sediment Geol 202:281–296

    Article  Google Scholar 

  • Reesink AJH, Bridge JS (2009) Influence of superimposed bedforms and flow unsteadiness on the formation of cross strata in dunes and unit bars - Part 2, further experiments. Sediment Geol 222:274–300

    Article  Google Scholar 

  • Reynaud JY, Tessier B, Berné S, Chamley H, De Batist M (1999a) Tide and wave dynamics on a sand bank from the deep shelf of the Western Channel Approaches. Mar Geol 161:339–359

    Article  Google Scholar 

  • Reynaud JY, Tessier B, Proust JN, Dalrymple RW, Marsset T, De Batist M, Bourillet J-F, Lericolais G (1999b) Eustatic and hydrodynamic controls on the architecture of a deep shelf sand bank (Celtic Sea). Sedimentology 46:703–721

    Article  Google Scholar 

  • Reynaud JY, Rage A, Tessier B, Néraudeau D, Bracini E, Carriol R-P, Clet-Pellerin M, Moullade M, Lericolais G (1999c) Importations et remaniements de faunes dans les sables de la plate-forme profonde des Approches Occidentales de la Manche. Oceanol Acta 22:381–396

    Article  Google Scholar 

  • Reynaud JY, Tessier B, Auffret J-P, Berné S, De Batist M, Marsset T, Walker P (2003) The offshore sedimentary cover of the English Channel and its northern and western approaches. J Quart Sci 18:261–282

    Article  Google Scholar 

  • Reynaud JY, Dalrymple RW, Vennin E, Parize O, Besson D, Rubino J-L (2006) Topographic controls on producing and depositing tidal cool-water carbonates, Uzès basin, SE France. J Sediment Res 76:117–130

    Article  Google Scholar 

  • Rubin DM (1987) Cross-bedding, bedforms and paleocurrents, vol 1, Concepts in Sedimentology and Paleontology. SEPM, Tulsa

    Book  Google Scholar 

  • Rubin DM, Hunter RE (1987) Bedform alignment in directionally varying flows. Science 237:276–278

    Article  Google Scholar 

  • Rubin DM, Ikeda H (1990) Flume experiments on the alignment of transverse, oblique, and longitudinal dunes in directionally varying flows. Sedimentology 37:673–684

    Article  Google Scholar 

  • Rubin DM, McCulloch DS (1980) Single and superimposed bedforms: a synthesis of San Francisco bay and flume observations. Sediment Geol 26:207–231

    Article  Google Scholar 

  • Shaw J, Amos CL, Greenberg DA, O’Reilly CT, Parrott DR, Patton E (2010) Catastrophic tidal expansion in the Bay of Fundy, Canada. Can J Earth Sci 47:1079–1091

    Article  Google Scholar 

  • Seilacher A (1967) Bathymetry of trace fossils. Mar Geol 5:413–428

    Article  Google Scholar 

  • Sinha B, Pingree RD (1997) The principal lunar semidiurnal tide and its harmonics: baseline solutions for M2 and M4 constituents on the North-West European continental shelf. Cont Shelf Res 17:1321–1365

    Article  Google Scholar 

  • Snedden JW, Dalrymple RW (1999) Modern shelf sand ridges: from historical perspective to a unified hydrodynamic and evolutionary model. In: Bergman KM, Snedden JW (eds) Isolated shallow marine sand bodies: sequence stratigraphic analysis and sedimentological perspectives. SEPM Spec Publ 64:13–28

    Google Scholar 

  • Southard JB, Boguchwal LA (1990) Bed configurations in steady unidirectional water flows. Part 2. Synthesis of flume data. J Sediment Petrol 60:649–657

    Google Scholar 

  • Stride AH (1963) Current-swept sea floors near the southern half of Great Britain. Quart J Geol Soc Lond 119:175–199

    Article  Google Scholar 

  • Stride AH (ed) (1982) Offshore tidal sands: processes and deposits. Chapman & Hall, London, 222 p

    Google Scholar 

  • Stride AH, Belderson RH, Kenyon NH, Johnson MA (1982) Offshore tidal deposits: sand sheet and sand bank facies. In: Stride AH (ed) Offshore tidal sands: processes and deposits. Chapman & Hall, London

    Google Scholar 

  • Surlyk F, Noe-Nygaard N (1991) Sand bank and dune facies architecture of a wide intracratonic seaway; Late Jurassic-Early Cretaceous Raukelv Formation, Jameson Land, East Greenland. In: Miall AD, Tyler N (eds) The three-dimensional facies architecture of terrigenous clastic sediments and its implications for hydrocarbon discovery and recovery. Concepts in Sediment Paleo 3:261–276

    Google Scholar 

  • Suter JR (2006) Facies models revisited: clastic shelves. In: Posamentier HW, Walker RG (eds) Facies models revisited. SEPM Spec Publ 84:339–397

    Google Scholar 

  • Swift DJP (1975) Tidal sand ridges and shoal retreat massifs. Mar Geol 18:105–134

    Article  Google Scholar 

  • Sztano O, De Boer P (1995) Basin dimensions and morphology as controls on amplification of tidal motions (the early Miocene North Hungarian Bay). Sedimentology 42:665–682

    Article  Google Scholar 

  • Tillman RW, Martinsen RS (1984) The Shannon shelf ridge sandstone complex, Salt Creek Anticline area, Powder River basin, Wyoming. In: Tillman RW, Siemers CT (eds) Siliciclastic shelf sediments. SEPM Spec Publ 34:1–34

    Google Scholar 

  • Trentesaux A, Stolk A, Berné S (1999) Sedimentology and ­stratigraphy of a tidal sand bank in the southern North Sea. Mar Geol 159:253–272

    Article  Google Scholar 

  • Uehara K, Scourse JD, Horsburgh KJ, Lambeck K, Purcell AP (2006) Tidal evolution of the northwest European shelf seas from the last glacial maximum to the present. J Geophys Res 111:C09025

    Article  Google Scholar 

  • Vail PR, Mitchum RM, Thomson S (1977) Seismic stratigraphy and global changes of sea level; Part 4, Global cycles of relative changes of sea level. In: Payton CE (ed) Seismic stratigraphy; Applications to hydrocarbon exploration. AAPG Memoir 26:83–97

    Google Scholar 

  • Van der Molen J, Gerrits J, De Swart HE (2004) Modelling the morphodynamics of a tidal shelf sea. Cont Shelf Res 24:483–507

    Article  Google Scholar 

  • Van Rijn LC (1982) Prediction of bed forms, alluvial roughness and sediment transport. Delft Hydraulics, S 487–11, Delft, The Netherlands

    Google Scholar 

  • Van Veen J (1936) Onderzoekingen in de Hoofden. Algemene Landsdruckerij’s Gravenhage, 252 p

    Google Scholar 

  • Viana AR, Faugères J-C, Stow DAV (1998) Bottom current controlled sand deposits—a review of modern shallow to deep-water environments. Sediment Geol 115:53–80

    Article  Google Scholar 

  • Visser MJ (1980) Neap-spring cycles reflected in Holocene subtidal large-scale bedform deposits: a preliminary note. Geology 8:543–546

    Article  Google Scholar 

  • Walker RG, Bergman KM (1993) Shannon sandstone in Wyoming: a shelf ridge complex reinterpreted as lowstand shoreface deposits. J Sediment Petrol 63:839–851

    Google Scholar 

  • Wells MR, Allison PA, Piggott MD, Gorman GJ, Hampson GJ, Pain CC, Fang F (2007) Numerical modeling of tides in the late Pennsylvanian Midcontinent seaway of North America with implications for hydrography and sedimentation. J Sediment Res 77:843–865

    Article  Google Scholar 

  • Wells MR, Allison PA, Piggott MD, Hampson GJ, Pain CC, Gorman GJ (2010) Tidal modeling of an ancient tide-dominated seaway, part 2: the Aptian Lower Greensand seaway of Northwest Europe. J Sediment Res 80:411–439

    Article  Google Scholar 

  • Wilson JB (1982) Shelly faunas associated with temperate offshore tidal deposits. In: Stride AH (ed) Offshore tidal sands: processes and deposits. Chapman & Hall, London

    Google Scholar 

  • Wilson JB (1988) A model for temporal changes in the faunal composition of shell gravels during a transgression on the continental shelf around the British Isles. In: Nelson CS (ed) Non-tropical shelf carbonates; modern and ancient. Sed Geol 60:95–105

    Google Scholar 

  • Wright J, Colling A, Park D (Open University S330 Course readers) (1999) Waves, tides and shallow-water processes, 2nd edn. Butterworth-Heinemann in association with the Open University, Oxford

    Google Scholar 

  • Yalin MS (1964) Geometrical properties of sand waves. Proc Am Soc Civil Eng 90:105–119

    Google Scholar 

  • Yang ZS, Liu JP (2007) A unique Yellow River-derived distal subaqueous delta in the Yellow Sea. Mar Geol 240:169–176

    Article  Google Scholar 

  • Yoshida S, Johnson HD, Pye K, Dixon RJ (2004) Transgressive changes from tidal estuarine to marine embayment depositional systems: the Lower Cretaceous Woburns Sands of southern England and comparison with Holocene analogs. AAPG Bull 88:1433–1460

    Article  Google Scholar 

  • Yoshida S, Steel RJ, Dalrymple RW (2007) Changes in depositional processes - an ingredient in the generation of new sequence-stratigraphic models. J Sediment Res 77:447–460

    Article  Google Scholar 

  • Zimmerman JTF (1978) Topographic generation of residual circulation by oscillatory (tidal) currents. Geophys Astrophys Fluid Dyn 11:35–47

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Yves Reynaud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Reynaud, JY., Dalrymple, R.W. (2012). Shallow-Marine Tidal Deposits. In: Davis Jr., R., Dalrymple, R. (eds) Principles of Tidal Sedimentology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0123-6_13

Download citation

Publish with us

Policies and ethics