Advertisement

A Learning Approach for Knowledge Acquisition in the Legal Domain

  • Enrico Francesconi
Chapter
Part of the Law, Governance and Technology Series book series (LGTS, volume 1)

Abstract

In this chapter an approach to support knowledge acquisition in the legal domain is presented: it is based on a semantic model for legislation and implemented using knowledge extraction techniques on legislative texts. This methodology is targeted to propose a framework which can contribute to bridge the gap between consensus and authoritativeness in legal knowledge implementation.

Keywords

Knowledge Acquisition Information Gain Semantic Model Legal Rule Lexical Unit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Agnoloni, T., L. Bacci, E. Francesconi, W. Peters, S. Montemagni, G. Venturi (2009). A Two-Level Knowledge Approach to Support Multilingual Legislative Drafting. In J. Breuker, P. Casanovas, M. Klein, E. Francesconi (Eds.) Law, Ontologies and the Semantic Web, vol. 188 of Frontiers in Artificial Intelligence and Applications. IOS Press, Amsterdam, 177–198.Google Scholar
  2. Bacci, L., P. Spinosa, C. Marchetti, R. Battistoni (2009). Automatic Mark-Up of Legislative Documents and Its Application to Parallel Text Generation. In N. Casellas, E. Francesconi, R. Hoekstra, S. Montemagni (Eds.) Proceedings of the 3rd Workshop on Legal Ontologies and Artificial Intelligence Techniques joint with 2nd Workshop on Semantic Processing of Legal Texts. Huygens Editorial, Barcelona, 45–54.Google Scholar
  3. Bartolini, R., A. Lenci, S. Montemagni, V. Pirrelli (2002). The Lexicon-Grammar Balance in Robust Parsing of Italian. In Proceedings of 3rd International Conference on Language Resources and Evaluation.Google Scholar
  4. Bartolini, R., A. Lenci, S. Montemagni, V. Pirrelli, C. Soria (2004a). Automatic Classification and Analysis of Provisions in Italian Legal Texts: A Case Study. In Proceedings of the Second International Workshop on Regulatory Ontologies.Google Scholar
  5. Bartolini, R., A. Lenci, S. Montemagni, C. Soria (2004b). Semantic Mark-Up of Legal Texts Through Nlp-Based Metadata-Oriented Techniques. In Proceedings of 4rd International Conference on Language Resources and Evaluation.Google Scholar
  6. Bentham, J., H.L.A. Hart (1970). Of Laws in General. Athlone, London, (1st ed. 1872).Google Scholar
  7. Biagioli, C. (1991). Definitional Elements of a Language For Representation of Statutory. Rechtstheorie, 11: 317–336.Google Scholar
  8. Biagioli, C. (1997). Towards a Legal Rules Functional Micro-Ontology. In Proceedings ofworkshop LEGONT ’97.Google Scholar
  9. Biagioli, C., F. Turchi. (2005). Model and Ontology Based Conceptual Searching in Legislative Xml Collections. In Proceedings of the Workshop on Legal Ontologies and Artificial Intelligence Techniques, 83–89.Google Scholar
  10. Biagioli, C., E. Francesconi, A. Passerini, S. Montemagni, C. Soria (2005). Automatic Semantics Extraction in Law Documents. In Proceedings of International Conference on Artificial Intelligence and Law, 133–139.Google Scholar
  11. Breuker, J., R. Hoekstra (2004a). Core Concepts Of Law: Taking Common-Sense Seriously. In Proceedings of Formal Ontologies in Information Systems.Google Scholar
  12. Breuker, J., R. Hoekstra (2004b). Epistemology and Ontology In Core Ontologies: Folaw and lricore, Two Core Ontologies For Law. In Proceedings of EKAW Workshop on Core ontologies. CEUR.Google Scholar
  13. Breuker, J., S. van de Ven, A. El Ali, M. Bron, S. Klarman, U. Milosevic, L. Wortel, A. Forhecz (2008). Developing Harness. ESTRELLA Deliverable 4.6/3b, European Commission.Google Scholar
  14. Breuker, J., P. Casanovas, M. Klein, E. Francesconi (Eds.) (2009). Law, Ontologies and the Semantic Web. Channelling the Legal Information Flood, vol. 188 of Frontiers in Artificial Intelligence and Applications. IOS Press, Amsterdam.Google Scholar
  15. Buckley, C., G. Salton (1988). Term-Weighting Approaches in Automatic Text Retrieval. Information Processing and Management, 24(5): 513–523.CrossRefGoogle Scholar
  16. Buitelaar, P., P. Cimiano (Eds.) (2008). Ontology Learning and Population: Bridging the Gap Between Text and Knowledge, vol. 167 of Frontiers in Artificial Intelligence and Applications. IOS Press, Amsterdam.Google Scholar
  17. Buitelaar, P., P. Cimiano, B. Magnini (2005). Ontology Learning From Text: An Overview. In Buitelaar et al. (Eds.) Ontology Learning from Text: Methods, Evaluation and Applications, vol. 123 of Frontiers in Artificial Intelligence and Applications. IOS Press, Amsterdam, 3–12.Google Scholar
  18. Bylander, T., B. Chandrasekaran (1987). Generic Tasks for Knowledge-Based Reasoning: The “Right” Level Of Abstraction For Knowledge Acquisition. International Journal of Man-Machine Studies, 26(2): 231–243.CrossRefGoogle Scholar
  19. Bench Capon, T.J.M., P.R.S. Visser (1997). Ontologies in Legal Information Systems; The Need For Explicit Specifications of Domain Conceptualizations. In Proceedings of the 6th International Conference on Artificial Intelligence and Law. ACM Press, New York, NY, 132–141.Google Scholar
  20. Casellas, N. (2008). Modelling Legal Knowledge through Ontologies. OPJK: The Ontology of Professional Judicial Knowledge. Ph.D. thesis, Institute of Law and Technology, Autonomous University of Barcelona.Google Scholar
  21. Chandrasekaran, B. (1986). Generic Tasks in Knowledge-Based Reasoning: High-Level Building Blocks for Expert System Design. IEEE Expert, 1(3): 23–30.CrossRefGoogle Scholar
  22. Cimiano, P. (2006). Ontology Learning and Population From Text. In Algorithms, Evaluation and Applications. Springer, Berlin.Google Scholar
  23. Clancey, W.J. (1981). The Epistemology of a Rule-Based Expert System: A Framework for Explanation. Technical Report STAN-CS-81-896, Stanford University, Department of Computer Science.Google Scholar
  24. Euzenat, J., P. Shvaiko (2007). Ontology Matching. Springer, Berlin.Google Scholar
  25. Francesconi, E., A. Passerini (2007). Automatic Classification of Provisions in Legislative Texts. International Journal on Artificial Intelligence and Law, 15(1): 1–17.CrossRefGoogle Scholar
  26. Francesconi, E., S. Faro, E. Marinai (2008). Thesauri Alignment for Eu Egovernment Services: A Methodological Framework. In Proceedings of the JURIX 2008 Conference. IOS Press, Amsterdam, 73–77.Google Scholar
  27. Gangemi, A., N. Guarino, C. Masolo, A. Oltramari, L. Schneider (2002). Sweetening Ontologies With Dolce. In A. Gangemi, N. Guarino, C. Masolo, A. Oltramari, L. Schneider (Eds.) Proceedings of the 13th International Conference on Knowledge Engineering and Knowledge Management (EKAW02), LNCS, vol. 2473.Google Scholar
  28. Gruber, T. (2006). Where the Social Web Meets the Semantic Web (Keynote Abstract). In I.F. Cruz, S. Decker, D. Allemang, C. Preist, D. Schwabe, P. Mika, M. Uschold, L. Aroyo (Eds.) The Semantic Web – ISWC 2006, Proceedings of the 5th International Semantic Web Conference, LNCS, vol. 4273. Springer, Berlin, 994.CrossRefGoogle Scholar
  29. Guarino, N. (1997). Semantic Matching: Formal Ontological Distinctions For Information Organization, Extraction, and Integration. In M.T. Pazienza (Ed.) Information Extraction: A Multidisciplinary Approach to an Emerging Information Technology, LNCS, vol. 1299. Springer, Berlin, 139–170.Google Scholar
  30. Hart, H. (1961). The Concept of Law. Clarendon Law Series. Oxford University Press, Oxford.Google Scholar
  31. Hoekstra, R., J. Breuker, M. Bello, A. Boer (2009). Lkif Core: Principled Ontology Development for the Legal Domain. In J. Breuker, P. Casanovas, M. Klein, E. Francesconi (Eds.) Legal Ontologies and the Semantic Web. IOS Press, Amsterdam.Google Scholar
  32. Hohfeld, W.N. (1913). Some Fundamental Legal Conceptions as Applied in Judicial Reasoning. I. Yale Law Journal, 23: 16–59.CrossRefGoogle Scholar
  33. Hohfeld, W.N. (1917). Some Fundamental Legal Conceptions as Applied in Judicial Reasoning. II. Yale Law Journal, 26: 710–770.CrossRefGoogle Scholar
  34. Kelsen, H. (1991). General Theory of Norms. Clarendon Press, Oxford.Google Scholar
  35. Lame, G. (2005). Using Nlp Techniques to Identify Legal Ontology Components: Concepts and Relations. Lecture Notes in Computer Science, 3369: 169–184.Google Scholar
  36. Lenci, A., S. Montemagni, V. Pirrelli, G. Venturi (2009). Ontology Learning from Italian Legal Texts. In J. Breuker, P. Casanovas, M. Klein, E. Francesconi (Eds.) Law, Ontologies and the Semantic Web, vol. 188 of Frontiers in Artificial Intelligence and Applications. IOS Press, Amsterdam, 7594.Google Scholar
  37. Quinlan, J.R. (1986). Inductive Learning of Decision Trees. Machine Learning, 1: 81–106.Google Scholar
  38. Rawls, J. (1955). Two Concepts of Rule. Philosophical Review, 64: 3–31.CrossRefGoogle Scholar
  39. Raz, J. (1977). Il Concetto di Sistema Giuridico. Il Mulino, Bologna.Google Scholar
  40. Ricciardi, M. (1997). Constitutive Rules and Institutions. In Meeting ofthe Irish Philosophical Club and the Royal Institute ofPhilosophy, Ballymanscanlon.Google Scholar
  41. Ross, A. (1968). Directives and Norms. Routledge, London.Google Scholar
  42. Saias, J., P. Quaresma (2005). A Methodology to Create Legal Ontologies in a Logic Programming Based Web Information Retrieval System. Lecture Notes in Computer Science, 3369: 185–200.Google Scholar
  43. Searle, J.R. (1969). Speech Acts: An Essay in the Philosophy of Language. Cambridge University Press, Cambridge, MA.Google Scholar
  44. Sebastiani, F. (2002). Machine Learning in Automated Text Categorization. ACM Computing Surveys, 34(1): 1–47. URL http://faure.iei.pi.cnr.it/fabrizio/Publications/ACMCS02.pdf.
  45. Studer, R., V. R. Benjamins, D. Fensel (1998). Knowledge Engineering: Principle and Methods. Data Knowledge Engineering, 25(1–2): 161–197.CrossRefGoogle Scholar
  46. van Heijst, G. (1995). The Role of Ontologies in Knowledge Engineering. Ph.D. thesis, Social Science Informatics, University of Amsterdam.Google Scholar
  47. Walter, S., M. Pinkal (2006). Automatic Extraction of Definitions From German Court Decisions. In Proceedings of the COLING-2006 Workshop on Information Extraction Beyond The Document, Sidney, 20–28.Google Scholar
  48. Walter, S., M. Pinkal (2009). Definitions in Court Decisions – Automatic Extraction and Ontology Acquisition. In J. Breuker, P. Casanovas, M. Klein, E. Francesconi (Eds.) Law, Ontologies and the Semantic Web, vol. 188 of Frontiers in Artificial Intelligence and Applications. IOS Press, Amsterdam, 95–113.Google Scholar
  49. Yang, Y., J.O. Pedersen (1997). A Comparative Study on Feature Selection in Text Categorization. In Proceedings of the Fourteenth International Conference on Machine Learning. Morgan Kaufmann Publishers Inc., San Mateo, CA, 412–420.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.ITTIG-CNR – Institute of Legal Information Theory and TechniquesItalian National Research CouncilTorinoItaly

Personalised recommendations