Skip to main content

Coral Calcification, Cells to Reefs

  • Chapter
  • First Online:
Coral Reefs: An Ecosystem in Transition

Abstract

In spite of more than one century and half of studies, mechanisms of coral biomineralization, leading to coral growth and reef formation, still remain poorly known, although major global threats to coral reefs, such as ocean acidification, primarily affect this process. Coral skeletons are used as environmental archives but the vital processes that govern incorporation of trace elements and stable isotope are still unknown. Our knowledge on coral physiology is restricted to the organismal level due to the lack of appropriate cell model, however the advent of new approaches, such as coral genomic, is changing drastically our knowledge on these animals even if only a few data are available concerning the field of biomineralization. This chapter reviews our present knowledge and discusses the different theories on coral calcification, from the molecular to the reef level. Conclusion is presented in a list of key issues to be resolved in order to understand the intimate mechanisms of calcification of corals, essential to determine the origin of the sensitivity of corals to ocean acidification, to improve paleoceanographic reconstructions or coral reef management, or “just” to understand how genes of a soft organism control the formation of an extracellular 3D-skeleton.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Addadi L, Weiner S (1985) Interactions between acidic proteins and crystals: stereochemical requirements in biomineralization. Proc Natl Acad Sci USA 82:4110–4114

    Article  CAS  Google Scholar 

  • Addadi L, Berman A, Moradian Oldak J, Weiner S (1989) Structural and stereochemical relations between acidic macromolecules of organic matrices and crystals. Connect Tissue Res 21:127–135

    Article  CAS  Google Scholar 

  • Addadi L, Joester D, Nudelman F, Weiner S (2005) Mollusk shell formation: a source of new concepts for understanding biomineralization processes. Chem Eur J 12:980–987

    Article  CAS  Google Scholar 

  • Adkins JF, Boyle EA, Curry WB, Lutringer A (2003) Stable isotopes in deep-sea corals and a new mechanism for ‘vital effects’. Geochim Cosmochim Acta 67:1129–1143

    Article  CAS  Google Scholar 

  • Adkins JF, Henderson GM, Wang S-L, O’Shea S, Mokadem F (2004) Growth rates of the deep-sea scleractinia Desmophyllum cristagalli and Enallopsammia rostrata. Earth Planet Sci Lett 227:481–490

    Article  CAS  Google Scholar 

  • Aizenberg J, Weiner S, Addadi L (2003) Coexistence of amorphous and crystalline calcium carbonate in skeletal tissues. Connect Tissue Res 44(suppl1):20–25

    CAS  Google Scholar 

  • Albrecht EA, Cavicchia JC (2001) Permeability barrier in the mantle epithelium lining the testis in the apple snail Pomacea canaliculata (Gastropoda: Ampullariidae). Tissue Cell 33:148–153

    Article  CAS  Google Scholar 

  • Al-Horani FA (2005) Effects of changing seawater temperature on photosynthesis and calcification in the scleractinian coral Galaxea fascicularis, measured with O2, Ca2+ and pH microsensors. Sci Mar 69:347–354

    Article  CAS  Google Scholar 

  • Al-Horani FA, Al-Moghrabi SM, de Beer D (2003a) Microsensor study of photosynthesis and calcification in the scleractinian coral, Galaxea fascicularis: active internal carbon cycle. J Exp Mar Biol Ecol 288:1–15

    Article  Google Scholar 

  • Al-Horani FA, Al-Moghrabi SM, de Beer D (2003b) The mechanism of calcification and its relation to photosynthesis and respiration in the scleractinian coral Galaxea fascicularis. Mar Biol 142:419–426

    CAS  Google Scholar 

  • Al-Horani FA, Ferdelman T, Al-Moghrabi SM, de Beer D (2005) Spatial distribution of calcification and photosynthesis in the scleractinian coral Galaxea fascicularis. Coral Reefs 24:173–180

    Article  Google Scholar 

  • Al-Horani FA, Tambutté É, Allemand D (2007) Dark calcification and the daily rhythm of calcification in the scleractinian coral, Galaxea fascicularis. Coral Reefs 26:531–538

    Article  Google Scholar 

  • Alivisatos AP (2000) Naturally aligned nanocrystals. Science 289:736–737

    Article  CAS  Google Scholar 

  • Allemand D, Furla P, Bénazet-Tambutté S (1998a) Mechanisms of carbon acquisition for endosymbiont photosynthesis in Anthozoa. Can J Bot 76:925–941

    Article  CAS  Google Scholar 

  • Allemand D, Tambutté É, Girard J-P, Jaubert J (1998b) Organic matrix synthesis in the scleractinian coral Stylophora pistillata: Role in biomineralization and potential target of the organotin tributyltin. J Exp Biol 201:2001–2009

    CAS  Google Scholar 

  • Allemand D, Ferrier-Pagès C, Furla P, Houlbrèque F, Puverel S, Reynaud S, Tambutté É, Tambutté S, Zoccola D (2004) Biomineralisation in reef-building corals: from molecular mechanisms to environmental control. C R Palévol 3:453–467

    Article  Google Scholar 

  • Allemand D, Mayer-Gostan N, De Pontual H, Bœuf G, Payan P (2007) Fish otolith calcification in relation to endolymph chemistry. In: Baeuerlein E (ed) Handbook of biomineralization. Wiley-VCH, Weinheim, pp 291–308

    Chapter  Google Scholar 

  • Allison N (1996) Comparative determination of trace and minor elements in coral aragonite by ion microprobe analysis with implications from Phuket, southern Thailand. Geochim Cosmochim Acta 60:3457–3470

    Article  CAS  Google Scholar 

  • Alloiteau J (ed) (1957) Contribution à la systématique des Madréporaires fossiles. CNRS, Paris

    Google Scholar 

  • Anderson MJ, Van Itallie CM, Fanning AS (2004) Setting up a selective barrier at the apical junction complex. Curr Opin Cell Biol 16:140–145

    Article  CAS  Google Scholar 

  • Anning T, Nimer N, Merrett MJ, Brownlee C (1996) Costs and benefits of calcification in coccolithophorides. J Mar Syst 9:45–56

    Article  Google Scholar 

  • Anthony KRN, Connolly SR, Willis BL (2002) Comparative analysis of energy allocation to tissue and skeletal growth in corals. Limnol Oceanogr 47:1417–1429

    Article  Google Scholar 

  • Asano A, Asano K, Sasaki H, Furuse M, Tsukita S (2003) Claudins in Caenorhabditis elegans: their distribution and barrier function in the epithelium. Curr Biol 13:1042–1046

    Article  CAS  Google Scholar 

  • Barnes DJ (1970) Coral skeletons: an explanation of their growth and structure. Science 170:1305–1308

    Article  CAS  Google Scholar 

  • Barnes DJ (1972) The structure and formation of growth-ridges in scleractinian coral skeletons. Proc R Soc Lond B 182:331–350

    Article  Google Scholar 

  • Barnes DJ (1985) The effect of photosynthetic and respiratory inhibitors upon calcification in the staghorn coral, Acropora formosa. In: Delesalle B, Galzin R, Salvat B (eds) Proceeding of the fifth international coral reef congress. Museum National d’Histoire Naturelle (National Museum of Natural History) and the Ecole Pratique des Hautes Etudes (Practical School of Advanced Studies), Tahiti, pp 161–166

    Google Scholar 

  • Barnes DJ, Chalker BE (1990) Calcification and photosynthesis in reef-building corals and algae. In: Dubinsky Z (ed) Coral reefs. Elsevier, Amsterdam, pp 109–131

    Google Scholar 

  • Barnes DJ, Lough JM (1996) Coral skeletons: storage and recovery of environmental information. Global Change Biol 2:569–582

    Article  Google Scholar 

  • Baronnet A, Cuif J-P, Dauphin Y, Farre B, Nouet J (2008) Crystallization of biogenic Ca-carbonate within organo-mineral micro-domains. Structure of the calcite prisms of the Pelecypod Pinctada margaritifera (Mollusca) at the submicron to nanometre ranges. Mineralog Mag 72:539–548

    Article  CAS  Google Scholar 

  • Baumgartner S, Littleton JT, Broadie K, Bhat MA, Harbecke R, Lengyel JA, Chiquet-Ehrismann R, Prokop A, Bellen HJ (1996) A Drosophila neurexin is required for septate junction and blood-nerve barrier formation and function. Cell 87:1059–1068

    Article  CAS  Google Scholar 

  • Bénazet-Tambutté S, Allemand D, Jaubert J (1996) Permeability of the oral epithelial layers in cnidarians. Mar Biol 126:43–53

    Article  Google Scholar 

  • Bergmann W, Lester D (1940) Coral-reefs and the formation of petroleum. Science 92:452–453

    Article  CAS  Google Scholar 

  • Berridge MJ, Loschman J (1972) Transporting epithelia. Academic, New York

    Google Scholar 

  • Bertucci A, Innocenti A, Zoccola D, Scozzafava A, Allemand D, Tambutté S, Supuran CT (2009a) Carbonic anhydrase inhibitors: inhibition studies of a coral secretory isoform with inorganic anions. Bioorg Med Chem Lett 19:650–653

    Article  CAS  Google Scholar 

  • Bertucci A, Innocenti A, Zoccola D, Scozzafava A, Tambutté S, Supuran CT (2009b) Carbonic anhydrase inhibitors. Inhibition studies of a coral secretory isoform by sulfonamides. Bioorg Med Chem 17:5054–5058

    Article  CAS  Google Scholar 

  • Bertucci A, Zoccola D, Tambutté S, Vullo D, Supuran CT (2010) Carbonic anhydrase activators. The first activation study of a coral secretory isoform with amino acids and amines. Bioorg Med Chem. doi:10.1016/j.bmc.2010.01.059

    Google Scholar 

  • Bleher R, Machado J (2004) Paracellular pathway in the shell epithelium of Anodonta cygnea. J Exp Zool 301A:419–427

    Article  Google Scholar 

  • Böhm F, Gussone N, Eisenhauer A, Dullo W-C, Reynaud S, Paytan A (2006) Calcium isotope fractionation in modern scleractinian corals. Geochim Cosmochim Acta 70:4452–4462

    Article  CAS  Google Scholar 

  • Borelli G, Guibbollini ME, Mayer-Gostan N, Priouzeau F, De Pontual H, Allemand D, Puverel S, Tambutté É, Payan P (2003a) Daily variations of endolymph composition: relationship with the otolith calcification process in trout. J Exp Biol 206:2685–2692

    Article  CAS  Google Scholar 

  • Borelli G, Mayer-Gostan N, Merle P-L, De Pontual H, Boeuf G, Allemand D, Payan P (2003b) Composition of biomineral organic matrices with special emphasis on turbot (Psetta maxima) otolith and endolymph. Calcif Tissue Int 72:717–725

    Article  CAS  Google Scholar 

  • Bourne GC (1887) On the anatomy of Mussa and Euphyllia and the morphology of the Madreporian skeleton. Q J Micr Sci XXVIII:21–51, + Plate III/IV

    Google Scholar 

  • Brown BE, Hewit R, Le Tissier MD (1983) The nature and construction of skeletal spines in Pocillopora damicornis (Linnaeus). Coral Reefs 2:81–89

    Article  Google Scholar 

  • Brownlee C, Taylor AR (2002) Algal calcification and silification. Encyclopedia of life sciences. MacMillan, London, pp 1–5

    Google Scholar 

  • Bryan WH, Hill D (1941) Spherulitic crystallization as a mechanism of skeletal growth in the hexacorals. Proc R Soc Queensl 52:78–91

    Google Scholar 

  • Buddemeier RW, Kinzie RA (1976) Coral growth. Oceanogr Mar Biol Annu Rev 14:183–225

    Google Scholar 

  • Chalker BE (1976) Calcium transport during skeletogenesis in hermatypic corals. Comp Biochem Physiol 54A:455–459

    Article  Google Scholar 

  • Chalker BE (1977) Daily variation in the calcification capacity of Acropora cervicornis. In: Taylor DL (ed) Proc Third Int Coral Reef Symp Rosenstiel School of Marine and Atmospheric Science, Miami, Florida, pp 417–423

    Google Scholar 

  • Chalker BE, Taylor DL (1975) Light-enhanced calcification, and the role of oxidative phosphorylation in calcification of the coral Acropora cervicornis. Proc R Soc Lond B 190:323–331

    Article  CAS  Google Scholar 

  • Chamberlain JA Jr (1978) Mechanical properties of coral skeleton: compressive strength and its adaptative significance. Paleobiology 4:419–435

    Google Scholar 

  • Chevalier J-P (1987) Ordre des Scléractiniaires. In: Doumenc D (ed) Cnidaires Anthozoaires. Masson, Paris, pp 403–764

    Google Scholar 

  • Chisholm J, Gattuso J-P (1991) Validation of the alkalinity anomaly technique for investigating calcification and photosynthesis in coral reef communities. Limnol Oceanogr 36:1232–1239

    Article  CAS  Google Scholar 

  • Clausen C (1971) Effects of temperature on the rate of 45Calcium uptake by Pocillopora damicornis. In: Lenhoff HM, Muscatine L, Davis LV (eds) Experimental coelenterate biology. University of Hawaii Press, Honolulu, pp 246–260

    Google Scholar 

  • Clausen CD, Roth AA (1975a) Estimation of coral growth rates from laboratory 45Ca incorporation rates. Mar Biol 33:85–91

    Article  CAS  Google Scholar 

  • Clausen CD, Roth AA (1975b) Effect of temperature and temperature adaptation on calcification rate in the hermatypic coral Pocillopora damicornis. Mar Biol 33:93–100

    Article  Google Scholar 

  • Clode PL, Marshall AT (2002a) Low temperature FESEM of the calcifying interface of a scleractinian coral. Tissue Cell 34:187–198

    Article  CAS  Google Scholar 

  • Clode PL, Marshall AT (2002b) Low temperature X-ray microanalysis of calcium in a scleractinian coral: evidence of active transport mechanisms. J Exp Biol 205:3543–3552

    CAS  Google Scholar 

  • Clode PL, Marshall AT (2003a) Skeletal microstructure of Galaxea fascicularis exsert septa: A high- resolution SEM study. Biol Bull 204:146–154

    Article  Google Scholar 

  • Clode PL, Marshall AT (2003b) Calcium associated with a fibrillar organic matrix in the scleractinian coral Galaxea fascicularis. Protoplasma 220:153–161

    Article  CAS  Google Scholar 

  • Cohen AL, McConnaughey TA (2003) Geochemical perspectives on coral mineralization. Rev Mineral Geochem 54:151–187

    Article  CAS  Google Scholar 

  • Cohen AL, Layne GD, Hart SR, Lobel SR (2001) Kinetic control of skeletal Sr/Ca in a symbiotic coral: implications for the paleotemperature proxy. Paleoceanography 16:20–26

    Article  Google Scholar 

  • Cohen AL, McCorkle DC, De Putron S, Gaetani GA, Rose KA (2009) Morphological and compositional changes in the skeletons of new coral recruits reared in acidified seawater: insights into the biomineralization response to ocean acidification. Geochem Geophys Geosyst 10:1–12

    Article  CAS  Google Scholar 

  • Coles SL, Fadlallah YH (1991) Reef coral survival an mortabity at low temperatures in the Arabian Gulf: new species-specific lower temperature limits. Coral Reefs 9:231–237

    Article  Google Scholar 

  • Cölfen H, Mann S (2003) Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures. Angew Chem Int Ed 42:2350–2365

    Article  CAS  Google Scholar 

  • Colombo-Pallotta MF, Rodríguez-Román A, Iglesias-Prieto R (2010) Calcification in bleached and unbleached Montastraea faveolata: evaluating the role of oxygen and glycerol. Coral Reefs. On line doi 10.1007/s00338-010-0638-x

    Google Scholar 

  • Constantz BR (1986) Coral skeleton construction: a physiochemically dominated process. Palaios 1:152–157

    Article  Google Scholar 

  • Constantz B (2008) Raman spectroscopy of the initial mineral phase of coral skeleton. In: Abstract Book, Oral Mini-Symposium 3: calcification and coral reef – past and future, The 11th ICRS, Fort Lauderdale, FL, p 14

    Google Scholar 

  • Constantz BR, Weiner S (1988) Acidic macromolecules associated with the mineral phase of scleractinian coral skeletons. J Exp Zool 248:253–258

    Article  CAS  Google Scholar 

  • Crenshaw MA (1972) The inorganic composition of molluscan extrapallial fluid. Biol Bull 143:506–512

    Article  CAS  Google Scholar 

  • Crossland CJ, Barnes DJ (1974) The role of metabolic nitrogen in coral calcification. Mar Biol 28:325–332

    Article  CAS  Google Scholar 

  • Crumbliss AL, Mc Lachlan KL, O’Daly JP, Henkens RW (1988) Preparation and activity of carbonic anhydrase immobilized on porous silica beads and graphite rods. Biotechnol Bioeng 31: 796–801

    Article  CAS  Google Scholar 

  • Cuif J-P, Dauphin Y (1998) Microstructural and physico-chemical characterization of ‘centers of calcification’ in septa of some recent scleractinian corals. Paläontologische Zeitschrift 72:257–270

    Google Scholar 

  • Cuif J-P, Dauphin Y (2004) The environment recording unit in coral skeletons: structural and chemical evidences of a biochemically driven stepping-growth process in coral fibres. Biogeosci Discuss 1:625–658

    Article  Google Scholar 

  • Cuif J-P, Dauphin Y (2005a) The environment recording unit in corals skeletons – a synthesis of structural and chemical evidences for a biochemically driven, stepping-growth process in fibres. Biogeosciences 2:61–73

    Article  CAS  Google Scholar 

  • Cuif J-P, Dauphin Y (2005b) The two-step mode of growth in the scleractinian coral skeletons from the micrometre to the overall scale. J Struct Biol 150:319–331

    Article  Google Scholar 

  • Cuif J-P, Dauphin Y, Denis A, Gautret P, Marin F (1996) The organo-mineral structure of coral skeletons: a potential source of new criteria for Scleractinian taxonomy. Bull Inst Océanogr Monaco 14: 359–367

    Google Scholar 

  • Cuif J-P, Dauphin Y, Freiwald A, Gautret P, Zibrowius H (1999) Biochemical markers of zooxanthellae symbiosis in soluble matrices of skeleton of 24 Scleractinia species. Comp Biochem Physiol 123A:269–278

    CAS  Google Scholar 

  • Cuif J-P, Dauphin Y, Doucet J, Salome M, Susini J (2003) XANES mapping of organic sulfate in three scleractinian coral skeletons. Geochim Cosmochim Acta 67:75–83

    Article  CAS  Google Scholar 

  • Cuif J-P, Dauphin Y, Berthet P, Jegoudez J (2004) Associated water and organic compounds in coral skeletons: quantitative thermogravimetry coupled to infrared absorption spectrometry. Geochem Geophys Geosyst 5:1–9

    Article  CAS  Google Scholar 

  • Cuif J-P, Dauphin Y, Farre B, Nehrke G, Nouet J, Salomé M (2008) Distribution of sulphated polysaccharides within calcareous biominerals suggests a widely shared two-step crystallization process for the microstructural growth units. Mineralog Mag 72:233–237

    Article  CAS  Google Scholar 

  • Dana JD (1843) On the temperature limiting the distribution of corals. Am J Sci 45:130–131

    Google Scholar 

  • Dana JD (1846) Structure and classification of zoophytes. United States Exploring Expedition during the years 1838, 1839, 1840, 1841, 1842, under the Command of Charles Wilkes, U.S.N. 7:1–740

    Google Scholar 

  • Dan-Sokhawa M, Hiroyuki K, Koichi N (1995) Paracellular, transepithelial permeation of mcromolecules in the body wall epithelium of starfish embryo. J Exp Zool 271:264–272

    Article  Google Scholar 

  • Dauphin Y (2001) Comparative studies of skeletal soluble matrices from some Scleractinian corals and Molluscs. Int J Biol Macromol 28:293–304

    Article  CAS  Google Scholar 

  • Dauphin Y, Cuif J-P, Massard P (2006) Persistent organic components in heated coral aragonitic skeletons-Implications for palaeoenvironmental reconstructions. Chem Geol 231:26–37

    Article  CAS  Google Scholar 

  • Dauphin Y, Cuif J-P, Williams CT (2008) Soluble organic matrices of aragonitic skeletons of Merulinidae (Cnidaria, Anthozoa). Comp Biochem Physiol 150B:10–22

    CAS  Google Scholar 

  • De Beer D, Kühl M, Stambler N, Vaki L (2000) A microsensor study of light enhanced Ca2+ uptake and photosynthesis in the reef-building hermatypic coral Favia sp. Mar Ecol Prog Ser 194:75–85

    Article  Google Scholar 

  • Demers C, Reggie Hamdy C, Corsi K, Chellat F, Tabrizian M, Yahia L (2002) Natural coral exoskeleton as a bone graft substitute: A review. Biomed Mater Eng 12:15–35

    Google Scholar 

  • Diamond JM, Wright EM (1969) Biological membranes: physical basis of ion and nonelectrolyte selectivity. Annu Rev Physiol 31: 581–646

    Article  CAS  Google Scholar 

  • Dodge RE, Vaisnys JR (1975) Hermatypic coral growth-banding as environmental recorder. Nature 258:706–708

    Article  Google Scholar 

  • Duerden JE (1903) West Indian Madreporian polyps. Memoirs Natl Acad Sci 8:401–599, + 25 plates

    Google Scholar 

  • Dunn SR, Phillips WS, Green DR, Weis VM (2007) Knockdown of Actin and caspase gene expression by RNA interference in the symbiotic anemone Aiptasia pallida. Biol Bull 212:250–258

    Article  CAS  Google Scholar 

  • Edmunds PJ, Davies PS (1986) An energy budget for Porites porites (Scleractinia). Mar Biol 92:339–347

    Article  Google Scholar 

  • Elahi R, Edmunds PJ (2007) Tissue age effects calcification in the Scleractinian coral Madracis mirabilis. Biol Bull 212:20–28

    Article  Google Scholar 

  • Erez J (1978) Vital effect on stable-isotope composition seen in foraminifera and coral skeletons. Nature 273:199–202

    Article  CAS  Google Scholar 

  • Erez J (2003) The source of ions for biomineralization in foraminifera and their implications for paleoceanographic proxies. Rev Mineral Geochem 54:115–149

    Article  CAS  Google Scholar 

  • Erez J, Braun A (2007) Calcification in hermatypic corals is based on direct seawater supply to the biomineralization site. In: Goldschmidt Conference Abstracts 2007 Cologne, Germany, pp A260.

    Google Scholar 

  • Estroff LA (2008) Introduction: biomineralization. Chem Rev 108:4329–4331

    Article  CAS  Google Scholar 

  • Faber WW, Preisig HR (1994) Calcified structures and calcification in protists. Protoplasma 181:78–105

    Article  Google Scholar 

  • Fang LS, Chen YWJ, Chen CS (1989) Why does the white tip of stony coral grow so fast without zooxanthellae? Mar Biol 103:359–363

    Article  Google Scholar 

  • Fautin DG, Mariscal RN (1991) Cnidaria: Anthozoa. In: Harrison FW, Westfall JA (eds) Placozoa, Porifera, Cnidaria, and Ctenophora. Wiley-Liss, New York, pp 267–358

    Google Scholar 

  • Feher JJ, Fullmer CS, Wasserman RH (1992) Role of facilitated diffusion of calcium by calbindin in intestinal calcium absorption. Am J Physiol 262:C517–C526

    CAS  Google Scholar 

  • Ferrier-Pagès C, Gattuso J-G, Dallot S, Jaubert J (2000) Effect of nutrient enrichment on growth and photosynthesis of the zooxanthellate coral Stylophora pistillata. Coral Reefs 19:103–113

    Article  Google Scholar 

  • Fincham AG, Moradian-Oldak J, Simmer JP (1999) The structural biology of the developing dental enamel matrix. J Struct Biol 126: 270–299

    Article  CAS  Google Scholar 

  • Fine M, Tchernov D (2007) Scleractinian coral species survive and recover from decalcification. Science 315:1811

    Article  CAS  Google Scholar 

  • Fowler GH (1885) The anatomy of Madreporaria. Part I. Q J Micr Sci Lond 25:577–599

    Google Scholar 

  • Frömter E, Diamond J (1972) Route of passive ion permeation in epithelia. Nat New Biol 235:9–13

    Article  Google Scholar 

  • Fukuda I, Ooki S, Fujita T, Murayama E, Nagasawa H, Isa Y, Watanabe T (2003) Molecular cloning of a cDNA encoding a soluble protein in the coral exoskeleton. Biochem Biophys Res Comm 304:11–17

    Article  CAS  Google Scholar 

  • Furla P, Bénazet-Tambutté S, Jaubert J, Allemand D (1998) Functional polarity of the tentacle of the sea anemone Anemonia viridis: role in inorganic carbon acquisition. Am J Physiol (Regul Integr Comp Physiol) 274:R303–R310

    CAS  Google Scholar 

  • Furla P, Allemand D, Orsenigo MN (2000a) Involvement of H+-ATPase and carbonic anhydrase in inorganic carbon uptake for endosymbiont photosynthesis. Am J Physiol (Regul Integr Comp) 278:R870–R881

    CAS  Google Scholar 

  • Furla P, Galgani I, Durand I, Allemand D (2000b) Sources and mechanisms of inorganic carbon transport for coral calcification and photosynthesis. J Exp Biol 203:3445–3457

    CAS  Google Scholar 

  • Gaillardet J, Allègre C (1995) Boron isotopic compositions of corals: seawater or diagenesis record? Earth Planet Sci Lett 136:665–676

    Article  CAS  Google Scholar 

  • Galloway SB, Work TM, Bochsler VS, Harley RA, Kramarsky-Winters E, Mc Laughlin SM, Meteyer CU, Morado JF, Nicholson JH, Parnell PG, Peters EC, Reynolds TL, Rotstein DS, Sileo L, Woodley CM (2007) Coral disease and health workshop: coral histopathology workshop II. National Oceanic and Atmospheric Administration, Silver Spring

    Google Scholar 

  • Gattuso J-P (1987) Écomorphologie, métabolisme, croissance et calcification du scléractiniaire à zooxanthelles Stylophora pistillata (Golfe d’Aqaba, Mer rouge). Influence de l’éclairement. PhD thesis, Aix-Marseille II

    Google Scholar 

  • Gattuso J-P, Frankignoulle M, Bourge I, Romaine S, Buddemeier RW (1998) Effect of calcium carbonate saturation of seawater on coral calcification. Glob Planet Change 18:37–46

    Article  Google Scholar 

  • Gattuso J-P, Allemand D, Frankignoulle M (1999) Photosynthesis and calcification at cellular, organismal and community levels in coral reefs: A review on interactions and control by carbonate chemistry. Am Zool 39:160–183

    CAS  Google Scholar 

  • Gattuso J-P, Reynaud-Vaganay S, Furla P, Romaine-Lioud S, Jaubert J, Bourge I, Frankignoulle M (2000) Calcification does not stimulate photosynthesis in the zooxanthellate scleractinian coral Stylophora pistillata. Limnol Oceanogr 45:246–250

    Article  Google Scholar 

  • Gautret P, Marin F (1993) Evaluation of diagenesis in scleractinian corals and calcified demosponges by substitution index measurement and intraskeletal organic matrix analysis. Cour Forsch Senckenb 164:317–327

    Google Scholar 

  • Gautret P, Cuif J-P, Freiwald A (1997) Composition of soluble mineralizing matrices in zooxnathellate and non-zooxanthellate scleractinian corals: biochemical assessment of photosynthetic metabolism through the study of a skeletal feature. Facies 36:189–194

    Article  Google Scholar 

  • Gautret P, Cuif J-P, Stolarski J (2000) Organic components of the skeleton of scleractinian corals. Evidence from in situ acridine orange staining. Acta Palaeontol Pol 45:107–118

    Google Scholar 

  • Gladfelter EH (1983) Skeletal development in Acropora cervicornis: II. Diel patterns of calcium carbonate accretion. Coral Reefs 2:91–100

    Article  Google Scholar 

  • Goldberg WM (2001a) Desmocytes in the calicoblastic epithelium of the stony coral Mycetophyllia reesi and their attachment to the skeleton. Tissue Cell 33:388–394

    Article  CAS  Google Scholar 

  • Goldberg WM (2001b) Acid polysaccharides in the skeletal matrix and calicoblastic epithelium of the stony coral Mycetophyllia reesi. Tissue Cell 33:376–387

    Article  CAS  Google Scholar 

  • Goreau T (1956) Hystochemistry of mucopolysaccharide-like substances and alkaline phosphatase in madreporaria. Nature 177:1029–1030

    Article  CAS  Google Scholar 

  • Goreau TF (1959) The physiology of skeleton formation in corals. I. A method for measuring the rate of calcium deposition by corals under different conditions. Biol Bull 116:59–75

    Article  CAS  Google Scholar 

  • Goreau TJ (1977) Coral skeletal chemistry: physiological and environmental regulation of stable isotopes and trace metals in Montastrea annularis. Proc R Soc Lond B 196:291–315

    Article  CAS  Google Scholar 

  • Goreau TF, Goreau NI (1959a) The physiology of skeleton formation in corals. II. Calcium deposition by hermatypic corals under different conditions. Biol Bull 117:239–250

    Article  CAS  Google Scholar 

  • Goreau TF, Goreau NI (1959b) The physiology of skeleton formation in corals. III. Calcium rate as a function of colony weight and total nitrogen in the reef coral Manicina areolota (Lin.). Biol Bull 118:419–429

    Article  Google Scholar 

  • Grasso LC, Maindonald J, Rudd S, Hayward DC, Saint R, Miller DJ, Ball EE (2008) Microarray analysis identifies candidates genes for key roles in coral development. BMC Genom 9:540. doi:10.1186/1471-2164-9-540

    Article  CAS  Google Scholar 

  • Green C, Bergquist PR (1982) Phylogenetic relationships within the invertebrata in relation to the structure of septate junctions and the development of ‘occluding’ junctional types. J Cell Sci 53:279–305

    Google Scholar 

  • Green CR, Flower NE (1980) Two new septate junctions in the phylum coelenterata. J Cell Sci 42:43–59

    CAS  Google Scholar 

  • Gupta L, Suzuki A, Kawahata H (2006) Aspartic acid concentrations in coral skeletons as recorders of past disturbances of metabolic rates. Coral Reefs 25:599–606

    Article  Google Scholar 

  • Hayasi K (1937) On the detection of calcium in the calicoblasts of some reef corals. Palaeo Trop Biol Sta Stud 2:169–176

    Google Scholar 

  • Hayes RL, Goreau NI (1977) Intracellular crystal-bearing vesicles in the epidermis of scleractinian corals, Astrangia danae (Agassiz) and Porites porites (Pallas). Biol Bull 152:26–40

    Article  CAS  Google Scholar 

  • Hemming NG, Hanson GN (1992) Boron isotopic composition and concentration in modern marine carbonates. Geochim Cosmochim Acta 56:537–543

    Article  CAS  Google Scholar 

  • Herfort L, Thake B, Taubner I (2008) Bicarbonate stimulation of calcification and photosynthesis in two hermatypic corals. J Phycol 44:91–98

    Article  CAS  Google Scholar 

  • Highsmith RC (1979) Coral growth rates and environmental controm of density banding. J Exp Mar Biol Ecol 37:105–125

    Article  Google Scholar 

  • Hochachka PW, Buck LT, Doll CJ, Land SC (1996) Unifying theory of hypoxia tolerance: molecular/metabolic defense and rescue mechanisms for surviving oxygen lack. Proc Nat Acad Sci USA 93:9493–9498

    Google Scholar 

  • Holcomb M, Cohen AL, Gabitov RI, Hutter JL (2009) Compositional and morphological features of aragonite precipitated experimentally from seawater and biogenically by corals. Geochim Cosmochim Acta 73:4166–4179

    Article  CAS  Google Scholar 

  • Hönisch B, Hemming NG, Grottoli AG, Amat A, Hanson GN, Bijma J (2004) Assessing scleractinian corals as recorders for paleo-pH: Empirical calibration and vital effects. Geochim Cosmochim Acta 68:3675–3685

    Article  CAS  Google Scholar 

  • Houlbrèque F, Tambutté É, Richard C, Ferrier-Pagès C (2004) Importance of the micro-diet for scleractinian corals. Mar Ecol Prog Ser 282:151–160

    Article  Google Scholar 

  • Howe SA, Marshall AT (2002) Temperature effects on calcification rate and skeletal deposition in the temperate coral, Plesiastrea versipora (Lamarck). J Exp Mar Biol Ecol 275:63–81

    Article  CAS  Google Scholar 

  • Hudson RL (1992) Ion transport by the isolated mantle epithelium of the freshwater clam, Unio complanatus. Am J Physiol 263: R76–R83

    CAS  Google Scholar 

  • Ichikawa K (2007) Buffering dissociation/formation reaction of biogenic calcium carbonate. Chem Eur J 13:10176–10181

    Article  CAS  Google Scholar 

  • Ingalls AE, Lee C, Druffel ERM (2003) Preservation of organic matter in mound-forming coral skeletons. Geochim Cosmochim Acta 67:2827–2841

    Article  CAS  Google Scholar 

  • Ip YK, Krishnaveni P (1991) Incorporation of strontium (90Sr++) into the skeleton of the hermatypic coral Galaxea fascicularis. J Exp Zool 258:273–276

    Article  CAS  Google Scholar 

  • Isa Y (1986) An electron microscope study on the mineralization of the skeleton of the staghorn coral Acropora hebes. Mar Biol 93:91–101

    Article  CAS  Google Scholar 

  • Isa Y, Okazaki M (1987) Some observations on the Ca2+-binding phospholipids from scleractinian coral skeletons. Comp Biochem Physiol 87B:507–512

    CAS  Google Scholar 

  • Isa Y, Yamazato K (1984) The distribution of carbonic anhydrase in a staghorn coral Acropora hebes (Dana). Galaxea 3:25–36

    CAS  Google Scholar 

  • Jackson AE, Yellowlees D (1990) Phosphate uptake by zooxanthellae isolated from corals. Proc R Soc Lond B 242:201–204

    Article  Google Scholar 

  • Jackson DJ, Mcdougall C, Green K, Simpson F, Wörheide G, Degnan BM (2006) A rapidly evolving secretome builds and patterns a sea shell. BMC Biol 4:40. doi:10.1186/1741-7007-4-40

    Article  CAS  Google Scholar 

  • Jacques TG, Pilson MEQ (1977) Laboratory observations on respiration, photosynthesis and factors affecting calcification in the temperate coral Astrangia danae. In: Taylor DL (ed) Proceedings of third international coral reef symposium – Rosenstiel School of Marine and Atmospheric Science, Miami, FL, pp 455–461

    Google Scholar 

  • Johnston IS (1980) The ultrastructure of skeletogenesis in zooxanthellate corals. Int Rev Cytol 67:171–214

    Article  CAS  Google Scholar 

  • Jokiel PL, Coles SL (1977) Effects of temperature on the mortality and growth of Hawaiian reef corals. Mar Biol 43:201–208

    Article  Google Scholar 

  • Jokiel PL, Maragos JE, Franzisket L (1978) Coral growth: buoyant weight technique. In: UNESCO (ed) Coral reefs: research methods, Paris, pp 529–541

    Google Scholar 

  • Jolivet A, Bardeau J-F, Fablet R, Paulet Y-M, De Pontual H (2008) Understanding otolith biomineralization processes: new insights into microscale spatial distribution of organic and mineral fractions from Raman microspectrometry. Anal Bioanal Chem 392:551–560

    Article  CAS  Google Scholar 

  • Jury CP, Whitehead RF, Szmant AM (2010) Effects of variations in carbonate chemistry on the calcification rates of Madracis mirabilis (Duchassaing 1861): bicarbonate concentrations best predict calcification rates. Global Change Biol 16:1632–1644

    Google Scholar 

  • Kahng SE, Maragos JE (2006) The deepest zooxanthellate scleractinian corals in the world? Coral Reefs 25:254

    Article  Google Scholar 

  • Kakei M, Nakahara H (1996) Aspects of carbonic anhydrase and carbonate content during mineralization of the rat enamel. Biochim Biophys Acta 1289:226–230

    Google Scholar 

  • Karoonuthaisiri N, Titiyevskiy K, Thomas JL (2003) Destabilization of fatty acid-containing liposomes by polyamidoamine dendrimers. Colloids Surf B 27:365–375

    Article  CAS  Google Scholar 

  • Katsu T, Imamura T, Komagoe K, Masuda K, Mizushima T (2007) Simultaneous measurements of K+ and calcein release from liposomes and the determination of pore size formed in a membrane. Anal Sci 23:517–522

    Article  CAS  Google Scholar 

  • Kawaguti S (1937) On the physiology of reef corals II. The effect of light on colour and form of reef corals. Palao Trop Biol Sta Stud 177:177–186

    Google Scholar 

  • Kawaguti S, Sakumoto D (1948) The effect of light on the calcium deposition of corals. Bull Oceanogr Inst Taïwan 4:65–70

    Google Scholar 

  • Kawaguti S, Sato K (1968) Electron microscopy on the polyp of staghorn corals with special reference to its skeleton formation. Biol J Okayama Univ 14:87–98

    Google Scholar 

  • Keil TA, Steinbrecht RA (1987) Diffusion barriers in silkmoth sensory epithelia: application of lanthanum tracer to olfactory sensilla of Antheraea polyphemus and Bombyx mori. Tissue Cell 19: 119–134

    Article  CAS  Google Scholar 

  • Klein MJ, Ahearn GA (1999) Calcium transport mechanisms of crustacean hepatopancreatic mitochondria. J Exp Zool 283: 147–159

    Article  CAS  Google Scholar 

  • Kleypas JA, McManus JW, Menez LAB (1999) Environmental limits to coral reef development: Where do we draw the line? Am Zool 39:146–159

    Google Scholar 

  • Knutson DW, Buddemeier RW, Smith SV (1972) Coral chronometers: seasonal growth bands in reef corals. Science 177:270–272

    Article  CAS  Google Scholar 

  • Kottra G, Frömter E (1983) Functional properties of the paracellular pathway in some leaky epithelia. J Exp Biol 106:217–229

    CAS  Google Scholar 

  • Krempf A (1907) Sur la formation du squelette chez les hexacoralliaires à polypier. CR Acad Sci Paris Ser D 144:157–159

    Google Scholar 

  • Krishnaveni P, Chou LM, Ip YK (1989) Deposition of calcium (45Ca2+) in the coral Galeaxea fascicularis. Comp Biochem Physiol 94A:509–513

    Article  CAS  Google Scholar 

  • Kühl M, Cohen Y, Dalsgaard T, Jorgensen BB, Revsbech NP (1995) Microenvironment and photosynthesis of zooxanthellae in scleractinian corals studied with microsensors for O2, pH and light. Mar Ecol Prog Ser 117:159–172

    Article  Google Scholar 

  • Lambert G, Lambert CC (1996) Spicule formation in the New Zealand ascidian Pyura pachydermatina (Chordata, Ascidiacea). Connect Tissue Res 34–5:25–31

    Google Scholar 

  • Lane NJ (1979) Freeze fracture and tracer studies on the intercellular junctions in insect rectal tissues. Tissue Cell 11:481–506

    Article  CAS  Google Scholar 

  • Le Tissier MDAA (1987) The nature and construction of skeletal spines in Pocillopora damicornis (Linnaeus). PhD thesis, University of Newcastle upon Tyne, UK, 140 pp

    Google Scholar 

  • Le Tissier MDAA (1988a) Patterns of formation and the ultrastructure of the larval skeleton of Pocillopora damicornis. Mar Biol 98:493–501

    Article  Google Scholar 

  • Le Tissier MDAA (1988b) Diurnal patterns of skeleton formation in Pocillopora damicornis (Linnaeus). Coral Reefs 7:81–88

    Article  Google Scholar 

  • Le Tissier MDAA (1990) The ultrastructure of the skeleton and skeletogenic tissues of the temperate coral Caryophyllia smithii. J Mar Biol Ass UK 70:295–310

    Article  Google Scholar 

  • Le Tissier MDAA (1991) The nature of the skeleton and skeletogenic tissues in the Cnidaria. Hydrobiologia 216/217:397–402

    Article  Google Scholar 

  • Leggat W, Marendy EM, Baillie B, Whitney SM, Ludwig M, Badgaer MR, Yellowlees D (2002) Dinoflagellate symbioses: strategies and adaptations for the acquisition and fixation of inorganic carbon. Funct Plant Biol 29:309–322

    Article  CAS  Google Scholar 

  • Lelong C, Mathieu M, Favrel P (2001) Identification of new bone morphogenetic protein-related members in invertebrates. Biochimie 83:423–426

    Article  CAS  Google Scholar 

  • Levy O, Appelbaum L, Gothlif Y, Hayward DC, Miller DJ, Hoegh-Guldberg O (2007) Light-responsive cryptochromes from a simple multicellular animal, the coral Acropora millepora. Science 318:467–469

    Article  CAS  Google Scholar 

  • Lowenstam HA (1981) Minerals formed by organisms. Science 211:1126–1131

    Article  CAS  Google Scholar 

  • Lowenstam HA, Weiner S (1989) On biomineralization. Oxford University Press, New York/Oxford

    Google Scholar 

  • Ma TYH (1934) On the season change of growth in a reef coral, Favia speciosa (Dana) and the temperature of the japanese seas during the latest geological times. Proc Imp Acad (Tokyo) 10:353–356

    Google Scholar 

  • Magie CR, Martindale MQ (2008) Cell-cell adhesion in the Cnidaria: insights into the evolution of tissue morphogenesis. Biol Bull 214:218–232

    Article  Google Scholar 

  • Mann S (1983) Mineralization in biological systems. Struct Bond 54:125–174

    Article  CAS  Google Scholar 

  • Mann S (2001) Biomineralization. Principles and concepts in bioinorganic materials chemistry. Oxford University Press, New York

    Google Scholar 

  • Mann K, Macek B, Olsen JV (2006) Proteomic analysis of the acid-soluble organic matrix of the chicken calcified eggshell layer. Proteomics 6:3801–3810

    Article  CAS  Google Scholar 

  • Marin F, Smith M, Isa Y, Muyzer G, Westbroek P (1996) Skeletal matrices, muci, and the origin of invertebrate calcification. Proc Nat Acad Sci USA 93:1554–1559

    Google Scholar 

  • Marin F, Luquet G, Marie B, Medakovic D (2008) Molluscan shell proteins: Primary structure, origin, and evolution. Curr Top Dev Biol 80:209–276

    Article  CAS  Google Scholar 

  • Marschal C, Garrabou J, Harmelin JG, Pichon M (2004) A new method for measuring growth and age in the precious red coral Corallium rubrum (L.). Coral Reefs 23:423–432

    Article  Google Scholar 

  • Marshall AT (1996) Calcification in hermatypic and ahermatypic corals. Science 271:637–639

    Article  CAS  Google Scholar 

  • Marshall AT, Clode PL (2002) Effect of increased calcium concentration in sea water on calcification and photosynthesis in the scleractinian coral Galaxea fascicularis. J Exp Biol 205:2107–2113

    CAS  Google Scholar 

  • Marshall AT, Clode PL (2003) Light-regulated Ca2+ uptake and O2 secretion at the surface of a scleractinian coral Galaxea fascicularis. Comp Biochem Physiol 136A:417–426

    CAS  Google Scholar 

  • Marshall AT, Clode P (2004) Calcification rate and the effect of temperature in a zooxanthellate and an azooxanthellate scleractinian reef coral. Coral Reefs 23:218–224

    Google Scholar 

  • Marshall AT, Wright OP (1993) Confocal laser scanning light microscopy of the extra-thecal epithelia of undecalcified scleractinian corals. Cell Tissue Res 272:533–543

    Article  Google Scholar 

  • Marshall AT, Wright A (1998) Coral calcification: autoradiography of a scleractinian coral Galaxea fascicularis after incubation in 45Ca and 14C. Coral Reefs 17:37–47

    Article  Google Scholar 

  • Marubini F, Thake B (1999) Bicarbonate addition promotes coral growth. Limnol Oceanogr 44:716–720

    Article  CAS  Google Scholar 

  • Marubini F, Ferrier-Pagès C, Furla P, Allemand D (2008) Coral calcification responds to seawater acidification: a working hypothesis towards a physiological mechanism. Coral Reefs 27:491–499

    Article  Google Scholar 

  • McConnaughey TA, Falk RH (1991) Calcium-proton exchange during algal calcification. Biol Bull 180:185–195

    Article  Google Scholar 

  • McConnaughey TA, Whelan JF (1997) Calcification generates protons for nutrient and bicarbonate uptake. Earth Sci Rev 42:95–117

    Article  CAS  Google Scholar 

  • McNeil BI, Matear RJ, Barnes DJ (2004) Coral reef calcification and climate change: The effect of ocean warming. Geophys Res Lett 31:1–4

    Google Scholar 

  • Meibom A, Stage M, Wooden J, Constantz BR, Dunbar RB, Owen A, Grumet N, Bacon CR, Chamberlain C (2003) Monthly Strontium/Calcium oscillations in symbiotic coral aragonite: Biological effects limiting the precision of the paleotemperature proxy. Geophys Res Lett 30:71–74

    Article  CAS  Google Scholar 

  • Meibom A, Cuif J-P, Hillion F, Constantz BR, Juillet-Leclerc A, Dauphin Y, Watanabe T, Dunbar RB (2004) Distribution of magnesium in coral skeleton. Geophys Res Lett 31:L23306. doi:10.1029/2004GL021313

    Article  Google Scholar 

  • Meibom A, Yurimoto H, Cuif J-P, Domart-Coulon I, Houlbrèque F, Constantz B, Dauphin Y, Tambutté É, Tambutté S, Allemand D, Wooden J, Dunbar R (2006) Vital effects in coral skeletal composition display strict three-dimensional control. Geophys Res Lett 33:L11608. doi:10.1029/2006GL025968

    Article  CAS  Google Scholar 

  • Meibom A, Mostefaoui S, Cuif J-P, Dauphin Y, Houlbrèque F, Dunbar R, Constantz B (2007) Biological forcing controls the chemistry of reef-building coral skeleton. Geophys Res Lett 34:L02601. doi:10.1029/2006GL028657

    Article  CAS  Google Scholar 

  • Meyer E, Aglyamova GV, Wang S, Buchanan-Carter J, Abrego D, Colbourne JK, Willis BL, Matz MV (2009) Sequencing and de novo analysis of a coral larval transcriptome using 454 GS-Flx. BMC Genom 10:219

    Article  CAS  Google Scholar 

  • Milne Edwards H (1857) Histoire naturelle des Coralliaires ou polypes proprement dits, Lib. Encyclopédique de Roret, Paris, France

    Google Scholar 

  • Mitsunaga K, Akasaka K, Shimada H, Fujin Y, Yasumasu I, Numandi H (1986) Carbonic anhydrase activity in developing sea urchin embryos with special reference to calcification of spicules. Cell Differ 18:257–262

    Article  CAS  Google Scholar 

  • Mitterer RM (1978) Amino acid composition and metal binding capability of the skeleton protein of corals. Bull Mar Sci 28:173–180

    CAS  Google Scholar 

  • Miyamoto H, Miyashita T, Okushima M, Nakano S, Morit T, Matsushiro A (1996) A carbonic anhydrase from the nacreous layer in oyster pearls. Proc Natl Acad Sci USA 93:9657–9660

    Article  CAS  Google Scholar 

  • Miyamoto H, Miyoshi F, Kohno J (2005) The Carbonic Anhydrase domain protein Nacrein is expressed in the epithelial cells of the mantle and acts as a negative regulator in calcification in the Mollusc Pinctada fucata. Zool Sci 22:311–315

    Article  CAS  Google Scholar 

  • Motoda S (1940) The environment and the life of masive reef coral, Goniastrea aspera Verrill inhabiting the reef flatin Palao. Palao Trop Biol Stn Stud 2:61–104

    Google Scholar 

  • Moura G, Vilarinho L, Santos AC, Machado J (2000) Organic compounds in the extrapalial fluid and haemolymph of Anodonta cygnea (L.) with emphasis on the seasonal biomineralization process. Comp Biochem Physiol 125B:293–306

    CAS  Google Scholar 

  • Moya A, Tambutté S, Tambutté É, Zoccola D, Caminiti N, Allemand D (2006) Study of calcification during a daily cycle of the coral Stylophora pistillata. Implications for “Light-Enhanced Calcification”. J Exp Biol 209:3413–3419

    Article  CAS  Google Scholar 

  • Moya A, Ferrier-Pagès C, Furla P, Richier S, Tambutté É, Allemand D, Tambutté S (2008a) Calcification and associated physiological parameters during a stress event in the scleractinian coral Stylophora pistillata. Comp Biochem Physiol 151A:29–36

    CAS  Google Scholar 

  • Moya A, Tambutté S, Lotto S, Allemand D, Zoccola D (2008b) Carbonic anhydrase in the scleractinian coral Stylophora pistillata: characterization, localization, and role in biomineralization. J Biol Chem 283:25475–25484

    Article  CAS  Google Scholar 

  • Moya A, Tambutté S, Béranger G, Gaume B, Scimeca J-C, Allemand D, Zoccola D (2008c) Cloning and use of a coral 36B4 gene to study differential expression of genes in “light-enhanced calcification” of corals. Mar Biotech 10:653–663

    Article  CAS  Google Scholar 

  • Mueller E (1984) Effects of a calcium channel blocker and an inhibitor of phosphodiesterase on calcification in Acropora formosa. In: Proceedings of Advances in Reef Science, Joint meeting of the Atlantic Reef Committee and the Internaional Society for Reef Studies, Miami, FL, pp 87–88

    Google Scholar 

  • Muscatine L (1971) Calcification in corals. In: Lenhoff HM, Muscatine L, Davis LV (eds) Experimental coelenterate biology. University of Hawaii Press, Honolulu, Joint meeting of the Atlantic Reef Committee and the International Society for Reef Studies, Miami, FL, pp 227–237

    Google Scholar 

  • Muscatine L, Cernichiari E (1969) Assimilation of photosynthetic products of zooxanthellae by a reef coral. Biol Bull 137:506–523

    Article  CAS  Google Scholar 

  • Muscatine L, Tambutté É, Allemand D (1997) Morphology of coral desmocytes, cells that anchor the calicoblastic epithelium to the skeleton. Coral Reefs 16:205–213

    Article  Google Scholar 

  • Muscatine L, Goiran C, Land L, Jaubert J, Cuif J-P, Allemand D (2005) Stable isotopes (δ C13 and δ N15) of organic matrix from coral skeleton. Proc Natl Acad Sci USA 102:1525–1530

    Article  CAS  Google Scholar 

  • Nakata K, Shimomura N, Shiina N, Izumi M, Ichikawa K, Shiro M (2002) Kinetic study of catalytic CO2 hydration by water-soluble model compound of carbonic anhydrase and anion inhibition effect on CO2 hydration. J Inorg Biochem 89:255–266

    Article  CAS  Google Scholar 

  • Nyberg J, Csapo J, Malmgren BA, Winter A (2001) Changes in the D- and L-content of aspartic acid, glutamic, acid, and alanine in a scleractinian coral over the last 300 years. Org Geochem 32:623–632

    Article  CAS  Google Scholar 

  • Nys Y (1990) Régulation endocrinienne du métabolisme calcique chez la poule et calcification de la coquille. Thèse de doctorat, Université de Paris, Paris, p 6

    Google Scholar 

  • Nys Y, Zawadzki J, Gautron J, Mills AD (1991) Whitening of brown-shelled eggs: mineral composition of uterine fluid and rate of protoporphyrin deposition. Poult Sci 70:1236–1245

    CAS  Google Scholar 

  • Oaki Y, Kotachi A, Miura T, Imai H (2006) Bridged nanocrystals in biominerals and their biomimetics: classical yet modern crystal growth on the nanoscale. Adv Func Mater 16:1633–1639

    Article  CAS  Google Scholar 

  • Ogilvie MM (1897) Microscopic and systematic study of madreporarian types of corals. Phil Trans R Soc Lond 187B:83–345

    Google Scholar 

  • Palmer AR (1992) Calcification in marine molluscs. How costly is it? Proc Natl Acad Sci USA 89:1379–1387

    Article  CAS  Google Scholar 

  • Pearse VB (1970) Incorporation of metabolic CO2 into coral skeleton. Nature 228:383

    Article  CAS  Google Scholar 

  • Pearse VB, Muscatine L (1971) Role of symbiotic algae (zooxanthellae) in coral calcification. Biol Bull 141:350–363

    Article  CAS  Google Scholar 

  • Perrin C (2003) Compositional heterogeneity and microstructural diversity of coral skeletons: implications for taxonomy and control on early diagenesis. Coral Reefs 22:109–120

    Article  Google Scholar 

  • Perrin C, Smith DC (2007) Decay of skeletal organic matrices and early diagenesis in coral skeletons. CR Palevol 6:253–260

    Article  Google Scholar 

  • Puverel S, Tambutté É, Zoccola D, Domart-Coulon I, Bouchot A, Lotto S, Allemand D, Tambutté S (2005a) Antibodies against the organic matrix in scleractinians: a new tool to study coral biomineralization. Coral Reefs 24:149–156

    Article  Google Scholar 

  • Puverel S, Tambutté É, Pereira-Mouries L, Zoccola D, Allemand D, Tambutté S (2005b) Soluble organic matrix of two Scleractinian corals: Partial and comparative analysis. Comp Biochem Physiol 141B:480–487

    CAS  Google Scholar 

  • Puverel S, Houlbrèque F, Tambutté É, Zoccola D, Payan P, Caminiti N, Tambutté S, Allemand D (2007) Evidences of low molecular weight components in the organic matrix of the reef-building coral, Stylophora pistillata. Comp Biochem Physiol 147A:850–856

    Google Scholar 

  • Ramseyer K, Miano TM, D’Orazio V, Wildberger A, Wagner T, Geister J (1997) Nature and origin of organic matter in carbonates from speleotherms, marine cements and coral skeletons. Org Geochem 26:361–378

    Article  CAS  Google Scholar 

  • Rasmussen CE (1988) The use of strontium as an indicator of anthropogenically altered environmental parameters. In: Proceedings of the 6th International Coral Reef Symposium, vol 2, Townsville, pp 325–330

    Google Scholar 

  • Raz-Bahat M, Erez J, Rinkevich B (2006) In vivo light-microscopic documentation for primary calcification processes in the hermatypic coral Stylophora pistillata. Cell Tissue Res 325:361–368

    Article  Google Scholar 

  • Reyes-Bermudez A, Lin Z, Hayward DC, Miller DJ, Ball EE (2009) Differential expression of three galaxin-related genes during settlement and metamorphosis in the scleractinian coral Acropora millepora. BMC Evol Biol 9:1–29

    Article  CAS  Google Scholar 

  • Reynaud S, Hemming NG, Juillet-Leclerc A, Gattuso J-P (2004) Effect of pCO2 and temperature on the boron isotopic composition of the zooxanthellate coral Acropora sp. Coral Reefs 23:539–546

    Google Scholar 

  • Reynaud-Vaganay S, Gattuso J-P, Cuif J-P, Jaubert J, Juillet-Leclerc A (1999) A novel culture technique for scleractinian corals: application to investigate changes in skeletal ∂18O as a function of temperature. Mar Ecol Progr Ser 180:121–130

    Article  CAS  Google Scholar 

  • Ridgwell A, Zeebe RE (2005) The role of the global carbonate cycle in the regulation and evolution of the Earth system. Earth Planet Sci Lett 234:299–315

    Article  CAS  Google Scholar 

  • Ries JB, Stanley SM, Hardie LA (2006) Scleractinian corals produce calcite, and grow more slowly, in artificial Cretaceous seawater. Geol Soc Am 34:525–528

    Google Scholar 

  • Rinkevich B, Loya Y (1984) Does light enhance calcification in hermatypic corals? Mar Biol 80:1–6

    Article  CAS  Google Scholar 

  • Rollion-Bard C, Chaussidon M, France-Lanord C (2003) pH control on oxigen isotopic composition of symbiotic corals. Earth Planet Sci Lett 215:275–288

    Article  CAS  Google Scholar 

  • Roth AA, Clausen CD, Yahiku PY, Clausen VE, Cox WW (1982) Some effects of light on coral growth. Pac Sci 36:65–81

    Google Scholar 

  • Sanderman IM (2008) Light driven lipid peroxidation of coral membranes and a suggested role in calcification. Rev Biol Trop 56:1–9

    Google Scholar 

  • Schmid V, Ono S, Reber-Muller S (1999) Cell-substrate interactions in cnidaria. Microsc Res Tech 44:254–268

    Article  CAS  Google Scholar 

  • Schneider K, Erez J (2006) The effect of carbonate chemistry on calcification and photosynthesis in the hermatypic coral Acropora eurystoma. Limnol Oceanogr 51:1284–1293

    Article  CAS  Google Scholar 

  • Schneider K, Levy O, Dubinsky Z, Erez J (2009) In situ diel cycles of photosynthesis and calcification in hermatypic corals. Limmol Oceanogr 54:1995–2002

    Google Scholar 

  • Shechter A, Berman A, Singer A, Freiman A, Grinstein M, Erez J, Aflalo ED, Sagi A (2008) Reciprocal changes in calcification of the gastrolith and cuticle during the molt cycle of the red claw crayfish Chera quadricarinatus. Biol Bull 214:122–134

    Article  CAS  Google Scholar 

  • Silliman B (1846) On the chemical composition of the calcareous corals. Am J Sci Arts 51:189–199

    Google Scholar 

  • Simkiss K (1964) Phosphates as crystal poisons of calcification. Biol Rev 39:487–505

    Article  CAS  Google Scholar 

  • Sinclair D (2004) Interactive comment on “The environment recording unit in coral skeletons: structural and chemical evidences of a biochemically driven stepping-growth process in coral fibres” by J.P. Cuif and Y. Dauphin. Biogeosci Disc 1(2004):265–272, Biogeosci Disc 1: 265–272

    Google Scholar 

  • Smith SV, Kinsey W (1978) Calcification and organic carbon metabolism as indicated by carbon dioxide. UNESCO, Paris

    Google Scholar 

  • Söllner C, Burghammer M, Busch-Nentwich E, Berger J, Schwarz H, Riekel C, Nicolson T (2003) Control of crystal size and lattice formation by Starmaker in otolith biomineralization. Science 302:282–286

    Article  CAS  Google Scholar 

  • Sorauf JE (1999) Skeletal microstructure, geochemistry, and organic remnants in Cretaceous scleractinian corals: Santonian Gosau beds of Gosau. Austria J Paleontol 73:1029–1041

    Google Scholar 

  • Stern B, Abbott GD, Collins MJ, Armstrong HA (1999) Development and comparison of different methos for the extraction of biomineral associated lipids. Anc Biomol 2:321–324

    CAS  Google Scholar 

  • Stolarski J (2003) Three-dimensional micro- and nanostructural characteristics of the scleractinian coral skeleton: a biocalcification proxy. Acta Palaeontol Pol 4:497–530

    Google Scholar 

  • Stolarski J, Meibom A, Przeniosto R, Mazur M (2007) A cretaceous scleractinian coral with a calcitic skeleton. Science 318:92–94

    Article  CAS  Google Scholar 

  • Supuran CT, Scozzafava A (2007) Carbonic anhydrases as targets for medicinal chemistry. Bioorg Med Chem 15:4336–4350

    Article  CAS  Google Scholar 

  • Swart PK (1979) The effect of seawater calcium concentrations on the growth and skeletal composition of a scleractinian coral, Acropora squamosa. J Sediment Pet 49:951–954

    CAS  Google Scholar 

  • Tambutté É, Allemand D, Bourge I, Gattuso J-P, Jaubert J (1995) An improved 45Ca protocol for investigating physiological mechanisms in coral calcification. Mar Biol 122:453–459

    Article  Google Scholar 

  • Tambutté É, Allemand D, Mueller E, Jaubert J (1996) A compartmental approach to the mechanism of calcification in hermatypic corals. J Exp Biol 199:1029–1041

    Google Scholar 

  • Tambutté É, Allemand D, Zoccola D, Meibom A, Lotto S, Caminiti N, Tambutté S (2007a) Observations of the tissue-skeleton interface in the scleractinian coral Stylophora pistillata. Coral Reefs 26:517–529

    Article  Google Scholar 

  • Tambutté S, Tambutté É, Zoccola D, Caminiti N, Lotto S, Moya A, Allemand D, Adkins J (2007b) Characterization and role of carbonic anhydrase in the calcification process of the azooxanthellate coral Tubastrea aurea. Mar Biol 151:71–83

    Article  CAS  Google Scholar 

  • Tambutté S, Tambutté É, Zoccola D, Allemand D (2007c) Organic matrix and Biomineralization of scleractinian corals. In: Baeuerlein E (ed) Handbook of biomineralization: biology aspects and structure formation. Wiley-VCH, Weinheim, pp 243–259

    Google Scholar 

  • Taylor DL (1977) Intra-colonial transport of organic compund and calcium in some atlantic reef corals. In: Taylor DL (ed) Proc Third Int Coral Reef Symp. Rosenstiel School of Marine and Atmospheric Science, Miami, FL, pp 431–436

    Google Scholar 

  • Taylor DL (1983) Mineralization in symbiotic systems. Endocytobiology 2:689–697

    Google Scholar 

  • Technau U, Rudd S, Maxwell P, Gordon PMK, Saina M, Grasso LC, Hayward DC, Sensen CW, Saint R, Holstein TW, Ball EE, Miller DJ (2005) Maintenance of ancestral complexity and non-metazoan genes in two basal cnidarians. Trends Genet 21:633–639

    Article  CAS  Google Scholar 

  • Teng HH, Dove PM, Orme CA, De Yoreo JJ (1998) Thermodynamics of calcite growth: baseline for understanding biomineral formation. Science 282:724–727

    Article  CAS  Google Scholar 

  • Tentori E, Allemand D (2006) Light-enhanced calcification and dark decalcification in isolates of the soft coral Cladiella sp. during tissue recovery. Biol Bull 211:193–202

    Article  CAS  Google Scholar 

  • Tohse H, Murayama E, Ohira T, Takagi Y, Nagasawa H (2006) Localization and diurnal variations of carbonic anhydrase mRNA expression in the inner ear of the rainbow trout Oncorhynchus mykiss. Comp Biochem Physiol 145C:257–264

    Google Scholar 

  • Truchot J-P (1987) Comparative aspects of extracellular acid-base balance. Springer, Berlin/Heidelberg

    Google Scholar 

  • Tyler S (2003) Epithelium - The primary building block for Metazoan complexity. Integr Comp Biol 43:55–63

    Article  Google Scholar 

  • Urist MR (1965) Bone: formation by autoinduction. Science 150:893–899

    Article  CAS  Google Scholar 

  • Vandermeulen JH (1975) Studies on reef corals. III. Fine structural changes of calicoblast cells in Pocillopora damicornis during settling and calcification. Mar Biol 31:69–77

    Article  Google Scholar 

  • Vaughan TW (1919) Corals and the formation of coral reefs. Ann Rep Smithson Inst 17:189–238

    Google Scholar 

  • Veis A (2005) A window on biomineralization. Science 307: 1419–1420

    Article  CAS  Google Scholar 

  • Veis DJ, Albinger TM, Clohisy J, Rahima M, Sabsay B, Veis A (1986) Matrix proteins of the teeth of the sea urchin Lytechinus variegatus. J Exp Zool 240:35–46

    Article  CAS  Google Scholar 

  • Vengosh A, Kolodny Y, Starinsky A, Chivas AR, McCulloch MT (1991) Coprecipitation and isotopic fractionation of boron in modern biogenic carbonates. Geochim Cosmochim Acta 55:2901–2910

    Article  CAS  Google Scholar 

  • Venn AA, Tambutté É, Lotto S, Zoccola D, Allemand D, Tambutté S (2009) Imaging intracellular pH in a reef coral and symbiotic anemone. Proc Natl Acad Sci USA 106:16574–16579

    Article  CAS  Google Scholar 

  • Vertino A, Stolarski J, Beuck L (2007) Organo-mineral skeleton of deep-water scleractinia: shelter and “snack” for bioeroding organisms. In: 10th International symposium on fossil Cnidaria and Porifera, St Petersburg, Russia, p 98

    Google Scholar 

  • Vielzeuf D, Garrabou J, Baronnet A, Grauby O, Marschal C (2008) Nano to macroscale biomineral architecture of red coral (Corallium rubrum). Am Mineral 93:1799–1815

    Article  CAS  Google Scholar 

  • Von Heider A (1881) Die Gattung Cladocora Ehrenb. Sber Akad Wiss Wien 84:634–637

    Google Scholar 

  • Wainwright SA (1963) Skeletal organization in the coral, Pocillopora damicornis. Q J Micr Sci 104:169–183

    Google Scholar 

  • Wang JT, Douglas AE (1999) Essential amino acid synthesis and nitrogen recycling in an alga-invertebrate symbiosis. Mar Biol 135: 219–222

    Article  CAS  Google Scholar 

  • Watanabe T, Fukuda I, China K, Isa Y (2003) Molecular analyses of protein components of the organic matrix in the exoskeleton of two scleractinian coral species. Comp Biochem Physiol 136B:767–774

    CAS  Google Scholar 

  • Weiner S, Levi-Kalisman Y, Raz S, Addadi L (2003) Biologically formed amorphous calcium carbonate. Connect Tissue Res 44(suppl1):214–218

    CAS  Google Scholar 

  • Weis V, Allemand D (2009) Whar determines coral health? Science 324:1153–1155

    Article  CAS  Google Scholar 

  • Weis VM, Smith GJ, Muscatine L (1989) A ‘CO2 supply’ mechanism in zooxanthellate cnidarians: role of carbonic anhydrase. Mar Biol 100:195–202

    Article  CAS  Google Scholar 

  • Wellington GM, Glynn PW (1983) Environmental influences on skeletal banding in Eastern Pacific (Panama) Corals. Coral Reefs 1:215–222

    Article  Google Scholar 

  • Wells JW (1956) Scleractinia. In: Moore RC (ed) Treatise of invertebrate paleontology. Geological Society of America, Lawrence, pp F328–F444

    Google Scholar 

  • Wheeler AP (1992) Mechanisms of molluscan shell formation. In: Bonucci E (ed) Calcification in biological systems. CRC, Boca Raton, pp 179–216

    Google Scholar 

  • Xu Y, Feng L, Jeffrey PD, Shi Y, Morel FM (2008) Structure and metal exchange in the cadmium carbonic anhydrase of marine diatoms. Nature 452:56–61

    Article  CAS  Google Scholar 

  • Yamashiro H (1995) The effects of HEBP, an inhibitor of mineral deposition, upon photosynthesis and calcification in the scleractinian coral, Stylophora pistillata. J Exp Mar Biol Ecol 191:57–63

    Article  CAS  Google Scholar 

  • Yamashiro H, Samata T (1996) New type of organic matrix in corals formed at the decalcified site: structure and composition. Comp Biochem Physiol 113A:297–300

    Article  CAS  Google Scholar 

  • Yonge CM, Nicholls AG (1931) Studies on the physiology of corals. V. On the relationship between corals and zooxanthellae. Sci Rep Gt Barrier Reef Exped 1:177–211

    Google Scholar 

  • Young SD (1971) Organic material from scleractinian coral skeletons. I. Variation in composition between several species. Comp Biochem Physiol 40B:113–120

    Google Scholar 

  • Young SD (1973) Calcification and synthesis of skeletal organic material in the coral, Pocillopora damicornis (L.) (Astrocoeniidae, Scleractinia). Comp Biochem Physiol 44A:669–672

    Article  Google Scholar 

  • Young SD, O’Connor JD, Muscatine L (1971) Organic material from scleractinian coral skeletons. II. Incorporation of 14C into protein, chitin and lipid. Comp Biochem Physiol 40B:945–958

    Google Scholar 

  • Yuasa HJ, Suzuki T, Yazawa M (2001) Structural organization of lower marine nonvertebrate calmodulin genes. Gene 279:205–212

    Article  CAS  Google Scholar 

  • Ziegler A (2008) The cationic composition and pH in the moulting fluid of Porcellio scaber (Crustacea, Isopoda) during calcium carbonate deposit formation and resorption. J Comp Physiol B 178:67–76

    Article  CAS  Google Scholar 

  • Zoccola D, Tambutté É, Sénegas-Balas F, Michiels J-F, Failla J-P, Jaubert J, Allemand D (1999) Cloning of a calcium channel α1 subunit from the reef-building coral, Stylophora pistillata. Gene 227:157–167

    Article  CAS  Google Scholar 

  • Zoccola D, Tambutté É, Kulhanek E, Puverel S, Scimeca J-C, Allemand D, Tambutté S (2004) Molecular cloning and localization of a PMCA P-type calcium ATPase from the coral Stylophora pistillata. Biochim Biophys Acta 1663:117–126

    Article  CAS  Google Scholar 

  • Zoccola D, Moya A, Béranger GE, Tambutté É, Allemand D, Carle GF, Tambutté S (2009) Specific expression of BMP2/4 ortholog in biomineralizing tissues of corals and action on mouse BMP receptor. Mar Biotech 11:260–269

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank our colleagues for stimulating discussions and comments on part of our manuscript, particularly to Anne Cohen, Jean-Pierre Cuif, Jonathan Erez, Maoz Fine, Jean-Pierre Gattuso, Anne Juillet-Leclerc, Nicole Mayer-Gostan, Anders Meibom, Patrick Payan, Stéphanie Reynaud, and Alina Szmant. We are grateful to Alexander Venn for his comments on both the content and English form. We also thank Paola Furla, Aurélie Moya, Lucilia Pereira-Mouriès, and Sandrine Puverel, who shared our passion for coral physiology during their doctoral or postdoctoral research and Christian Söllner for the gift of antibodies. We also thank Séverine Lotto, Nathalie Techer and Natacha Segonds for their excellent technical work and the staff of the library of the Oceanographic museum as well as that of aquarium for their continuous help. Finally, we also remember all the stimulating discussions with Len Muscatine in the lab or in front of a glass of French swine during his visits in Monaco and we dedicate this review to him. Work performed at the Scientific Center of Monaco was funded by the Government of the Principality of Monaco.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Allemand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Allemand, D., Tambutté, É., Zoccola, D., Tambutté, S. (2011). Coral Calcification, Cells to Reefs. In: Dubinsky, Z., Stambler, N. (eds) Coral Reefs: An Ecosystem in Transition. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0114-4_9

Download citation

Publish with us

Policies and ethics