Skip to main content

Reef Bioerosion: Agents and Processes

  • Chapter
  • First Online:
Coral Reefs: An Ecosystem in Transition

Abstract

Coral reef maintenance depends on the balance between constructive and destructive forces. Constructive forces are mainly calcification and growth of corals and encrusting coralline algae. Destructive forces comprise physical, chemical, and biological erosion. Bioerosion is considered as the main force of reef degradation because physical erosion (storms) is temporary and localized, and chemical erosion is considered as negligible due to the actual ocean chemistry (Scoffin et al. 1980). Reef bioerosion affects sedimentary and skeletal carbonate substrates. It plays an important role in reef sedimentation, diversity maintenance by creating habitats and by providing food resources, and in biogeochemical cycles (recycling of dissolved Ca2+ and C). Thus, bioerosion is an integral part of the coral reef carbonate balance. The concept of bioerosion was introduced by Neumann (1966). It includes biocorrosion, which refers to destruction of carbonates by chemical means, and bioabrasion which refers to mechanical removal of carbonates by organisms (Golubic and Schneider 1979; Schneider and Torunski 1983).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alker AP, Smith GW, and Kim K (2001) Characterization of Aspergillus sydowii (Thom et Church), a fungal pathogen of Caribbean sea fan corals. Hydrobiologia 460:105–111

    Article  Google Scholar 

  • Al-Thukair AA, Golubic S (1991a) New endolithic cyanobacteria from the Arabian Gulf I. Hyella immanis sp. nov. J Phycol 27:766–780

    Article  Google Scholar 

  • Al-Thukair AA, Golubic S (1991b) Five new Hyella species from the Arabian Gulf. Algol Stud 64:167–197

    Google Scholar 

  • Anthony KRN, Kline DI, Diaz-Pulido G, Dove S, Hoegh-Guldberg O (2008) Ocean acidification causes bleaching and productivity loss in coral reef builders. PNAS 105:17442–17446

    Article  CAS  Google Scholar 

  • Bathurst RGC (1966) Boring algae, micrite envelopes, and lithification of molluscan biosparites. Lpool Manchr Geol J 5:15–32

    Google Scholar 

  • Bak RPM (1976) The growth of coral colonies and the importance of crustose coralline algae and burrowing sponges in relation with carbonate accumulation. Neth J Sea Res 10:285–337

    Article  Google Scholar 

  • Bak RPM (1990) Patterns of echinoid bioerosion in two Pacific coral reef lagoons. Mar Ecol Prog Ser 66:267–272

    Article  Google Scholar 

  • Bentis CJ, Kaufman L, Golubic S (2000) Endolithic fungi in reef-building corals (Order: Scleractinia) are common, cosmopolitan, and potentially pathogenic. Biol Bull 198:254–260

    Article  CAS  Google Scholar 

  • Bellwood DR, Choat JH (1990) A functional analysis of grazing in parrotfishes (family Scaridae): the ecological implications. Environ Biol Fish 28:189–214

    Article  Google Scholar 

  • Bromley RG, D’Alessandro A (1990) Comparative analysis of bioerosion in deep and shallow water, Pliocene to Recent, Mediterranean Sea. Ichnos 1:43–49

    Article  Google Scholar 

  • Bruggemann JH, van Oppen MJH, Breeman AN (1994) Foraging by the spotlight parrotfish Sparisoma viride. I. Food selection in different, socially determined habitats. Mar Ecol Prog Ser 106:41–55

    Article  Google Scholar 

  • Calcinai B, Arilla A, Cerrano C, Bavestrello G (2003) Taxonomy-related differences in the excavating micro-patterns of boring sponges. J Mar Biol Ass 83:37–39

    Google Scholar 

  • Campbell SE (1980) Palaeoconchocelis starmachii, a carbonate boring microfossil from the Upper Silurian of Poland (425 million years old): implications for the evolution of the Bangiaceae (Rhodophyta). J Phycol 19:25–36

    Google Scholar 

  • Campbell SE (1982) Precambrian endoliths discovered. Nature 299:429–431

    Article  Google Scholar 

  • Campbell SE, Kazmierczak J, Golubic S (1979) Palaeoconchocelis starmachii gen. n., sp. n., an endolithic rhodophyte (Bangiaceae) from the Silurian of Poland. Acta Palaeontol Pol 24:405–408

    Google Scholar 

  • Carreiro-Silva M, McClanahan TR, Kiene WE (2005) The role of inorganic nutrients and herbivory in controlling microbioerosion of carbonate substratum. Coral Reefs 24:214–221

    Article  Google Scholar 

  • Carriker MR (1969) Excavation of boreholes by the gastropod, Urosalpinx: an analysis by light and scanning electron microscopy. Am Zool 9:917–933

    Google Scholar 

  • Cedhagen T (1994) Taxonomy and biology of Hirrokkin sarcophaga gen. et sp. n., a parasitic foraminiferan (Rosalinidae). Sarsia 79:65–82

    Google Scholar 

  • Chazottes V, Le Campion-Alsumard T, Peyrot-Clausade M (1995) Bioerosion rates on coral reefs: interaction between macroborers, microborers and grazers (Moorea, French Polynesia). Palaeo 113:189–198

    Article  Google Scholar 

  • Chazottes V, Le Campion-Alsumard T, Peyrot-Clausade M, Cuet P (2002) The effects of eutrophication-related alterations to coral reef communities on agents and rates of bioerosion (Reunion Island, Indian Ocean). Coral Reefs 21:375–390

    Google Scholar 

  • Cobb WR (1975) Fine structural features of destruction of calcareous substrata by the burrowing sponge Cliona celata. Trans Am Microsc Soc 94:197–202

    Article  Google Scholar 

  • Conand C, Heeb M, Peyrot-Clausade M, Fontaine MF (1998) Bioerosion by the sea urchin Echinometra on La Reunion reefs (Indian Ocean) and comparison with Tiahura reefs (French Polynesia). In: Mooi R, Telford M (eds) Echinoderms: San Francisco. AA Balkema, Rotterdam, pp 609–615

    Google Scholar 

  • Davies PJ, Hutchings PA (1983) Initial colonization, erosion and accretion on coral substrates. Experimental results, Lizard Island, Great Barrier Reef. Coral Reefs 2:27–35

    Article  Google Scholar 

  • Domart-Coulon IJ, Sinclair CS, Hill RT, Tambutté S, Puverel S, Ostrander GK (2004) A basidiomycete isolated from the skeleton of Pocillopora damicornis (Scleractinia) selectively stimulates short-term survival of coral skeletogenic cells. Mar Biol 144:583–592

    Article  Google Scholar 

  • Edinger EN, Limmon GV, Jompa J, Widjatmoko W, Heikoop JM, Risk MJ (2000) Normal coral growth rates on dying reefs: are coral growth rates good indicators of reef health? Mar Poll Bull 40:404–425

    Article  CAS  Google Scholar 

  • Ercegovic A (1932) Etudes écologiques et sociologiques des Cyanophycées lithophytes de la côte Yougoslave de l’ Adriatique. Bull Int Acad Youg Sci Arts Cl Sc Math Nat 26:33–56

    Google Scholar 

  • Evans JW (1970). Palaeontological implications of a biological study of rock boring clams (Family Pholadidae). In: Crimes TP, Harper JC (eds) Trace fossils, pp. 127–140. Geol J Special Issue 3. Seel House Press, Liverpool

    Google Scholar 

  • Fabricius K, De’ath G, McCook L, Turak E, Williams DM (2005) Changes in algal, coral and fish assemblages along water quality gradients on the inshore Great Barrier Reef. Mar Poll Bull 51:384–398

    Article  CAS  Google Scholar 

  • Fabry VJ, Seibel BA, Feely RA, Orr JC (2008) Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J Mar Sci 65:414–432

    Article  CAS  Google Scholar 

  • Ferrer LM, Szmant AM (1988) Nutrient regeneration by the endolithic communities in coral skeletons. Proc 6th Int Coral Reef Symp 3:1–4. Townsville, Australia

    Google Scholar 

  • Fine M, Loya Y (2002) Endolithic algae: an alternative source of photoassimilates during coral bleaching. Proc R Soc Lond 269:1205–1210

    Article  Google Scholar 

  • Fine M, Meroz-Fine E, Hoegh-Guldberg O (2005) Tolerance of endolithic algae to elevated temperature and light in the coral Montipora monasteriata from the southern Great Barrier Reef. J Exp Biol 208:75–81

    Article  Google Scholar 

  • Freiwald A, Reitner J, and Krutschinna J (1997) Microbial alteration of the deep-water coral Lophelia pertusa: Early post-mortem processes. Facies 36:223–226

    Article  Google Scholar 

  • Garcia-Pichel F (2006) Plausible mechanisms for the boring on carbonates by microbial phototrophs. Sedim Geol 185:205–213

    Article  Google Scholar 

  • Gherardi DFM, Bosence DWJ (2001) Composition and community structure of the coralline algal reefs from Atol das Rocas, Suth Atlantic, Brazil. Coral Reefs 19:205–219

    Article  Google Scholar 

  • Glaub I, Golubic S, Gektidis M, Radtke G, Vogel K (2007) Microborings and microbial endoliths: geological implications. In: Miller W III (ed) Trace fossils: concepts, problems, prospects. Elsevier, Amsterdam-Oxford-New York, pp 368–381

    Google Scholar 

  • Glaub I, Vogel K (2004) The stratigraphic record of microborings. Fossils Strata 51:126–135

    Google Scholar 

  • Glynn PW (1984) Widespread coral mortality and the 1982-83 El Nino event. Environ Conserv 11:133–146.

    Google Scholar 

  • Glynn PW (1997) Bioerosion and coral reef growth: a dynamic balance. In: Birkeland C (ed) Life and death of coral reefs. Chapman and Hall, New York, pp 68–95

    Google Scholar 

  • Golubic S, Schneider J (1979) Carbonate dissolution. In: Trudinger PA, Swaine DJ (eds) Biogeochemical cycling of mineral-forming elements. Elsevier, Amsterdam-Oxford-New York, pp 107–129

    Chapter  Google Scholar 

  • Golubic S, Brent G, Le Campion-Alsumard T (1970) Scanning electron microscopy of endolithic algae and fungi using a multipurpose casting-embedding technique. Lethaia 3:203–209

    Article  Google Scholar 

  • Golubic S, Perkins RD, Lukas KJ (1975) Boring microorganisms and microborings in carbonate substrates. In: Frey RW (ed) The study of trace fossils. Springer, Heidelberg-Berlin-New York, pp 229–259

    Google Scholar 

  • Golubic S, Friedmann I, Schneider J (1981) The lithobiontic ecological niche, with special reference to microorganisms. J Sedim Petrol 51:475–478

    Google Scholar 

  • Golubic S, Campbell SE, Spaeth C (1983) Kunsharzausguesse fossiler Mikroben-Bohrgaenge (Resin-casting of fossil microbial borings). Der Praeparator, Bochum 29:197–200

    Google Scholar 

  • Golubic S, Radtke G, Le Campion-Alsumard T (2005) Endolithic fungi in marine ecosystems. Trends Microbiol 13:229–235

    Article  CAS  Google Scholar 

  • Green JW, Knoll AH, Swett K (1988) Microfossils from oolites and pisolites of the Upper Proterozoic Eleonore Bay Group, central east Greenland. J Paleontol 62:835–852

    CAS  Google Scholar 

  • Hansen TA, Kelley PH (1995) Spatial variation of naticid gastropod predation in the Eocene of North America. Palaios 10:168–278

    Article  Google Scholar 

  • Harper EM (1994) Are conchiolin sheets in corbulid bivalves primarily defensive? Palaeontology 37:551–578

    Google Scholar 

  • Hassan M, Dullo W. -C, Fink A (1996). Assessment of boring activity in Porites lutea from Aqaba (Red Sea) using computed tomography. Proceedings of the 8th international coral reef symposium, Panama, 1996, 5

    Google Scholar 

  • Havenhand JN, Buttler FR, Thorndyke MC, Williamson JE (2008) Near-future levels of ocean acidification reduce fertilization success in a sea urchin. Curr Biol 18:R651–R652

    Article  CAS  Google Scholar 

  • Hein FJ, Risk MJ (1975) Bioerosion of coral heads: inner patch reefs, Florida reef tract. Bull Mar Sci 25:133–137

    Google Scholar 

  • Hoegh-Guldberg O (1999) Climate change, coral bleaching and the future of the world’s coral reefs. Mar Fresh Res 50:839–866

    Article  Google Scholar 

  • Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742

    Article  CAS  Google Scholar 

  • Hoey AS, Bellwood DR (2008) Cross-shelf variation in the role of parrotfishes on the Great Barrier Reef. Coral Reefs 27:27–47

    Article  Google Scholar 

  • Holmes KE, Edinger EN, Hariyadi, Limmon GV, Risk MJ, Limmon GV, Risk MJ (2000) Bioerosion of live massive corals and branching coral rubble on Indonesian coral reefs. Mar Pollut Bull 40:606–617

    Article  CAS  Google Scholar 

  • Hook JE, Golubic S, Milliman JD (1984) Micritic cement in microborings is not necessarily a shallow-water indicator. J Sedim Petrol 54:425–431

    CAS  Google Scholar 

  • Hubbard DK, Miller AI, Scaturo D (1990) Production and cycling of calcium carbonate in a shelf-edge reef system (St Croix, U.S.: Virgin Islands): applications to the nature of reef systems in the fossil record. J Sediment Petrol 60:335–360

    Google Scholar 

  • Hughes TP, Rodrigues MJ, Bellwood DR, Ceccarelli D, Hoegh-Guldberg O, McCook L, Moltschaniwskyj N, Pratchett MS, Steneck RS, Willis B (2007) Phase shifts, herbivory, and the resilience of coral reefs to climate change. Curr Biol 17:360–365

    Article  CAS  Google Scholar 

  • Hutchings PA (1986) Biological destruction of coral reefs. Coral Reefs 4:239–252

    Article  Google Scholar 

  • Hutchings PA, Murray A (1982) Patterns of recruitment of polychaetes to coral substrates at Lizard Island, Great Barrier Reef – an experimental approach. Aust J Mar Fresh Res 33:1029–1037

    Article  Google Scholar 

  • Hutchings PA, Peyrot-Clausade M (2002) The distribution and abundance of boring species of polychaetes and sipunculans in coral substrates in French Polynesia. J Exp Mar Biol Ecol 269:101–121

    Article  Google Scholar 

  • IPCC, Climate Change (2007) The physical science basis. In: Solomon S et al. (eds) Contribution of working group I to the fourth assessment. Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, and New York

    Google Scholar 

  • James NP, Kobluk DR, Pemberton SG (1977) The oldest macroborers: lower Cambrian of labrador. Science 197:980–983

    Article  CAS  Google Scholar 

  • Kendrick B, Risk MJ, Michaelides J, Bergman K (1982) Amphibious microborers: bioeroding fungi isolated from live corals. Bull Mar Sci 32:862–867

    Google Scholar 

  • Kiene WE (1985) Biological destruction of experimental coral substrates at Lizard Island, Great Barrier Reef, Australia. Proc 5th Int Coral Reef Symp 5:339–344

    Google Scholar 

  • Kiene WE, Hutchings PA (1994) Bioerosion experiments at Lizard Island, Great Barrier Reef. Coral Reefs 13:91–98

    Article  Google Scholar 

  • Kleemann KH (1996) Biocorrosion by bivalves. Mar Ecol 17:145–158

    Article  CAS  Google Scholar 

  • Klein R, Mokady O, Loya Y (1991) Bioerosion in ancient and comtemporary corals of the genus Porites: patterns and palaeoenvironmental implications. Mar Ecol Prog Ser 77:245–251

    Article  Google Scholar 

  • Kleypas JA, Feely RA, Fabry VJ, Langdon C, Sabine CL, Robbins LL (2006) Impacts of ocean acidification on coral reefs and other marine calcifyers. In: NSF, NOAA and U.S. Geological Survey (eds) A guide for future research, report of a workshop held 18-20 April 2005, St Petersburg, pp 1–88

    Google Scholar 

  • Knoll AH, Golubic S, Green J, Swett K (1986) Organically preserved microbial endoliths from the Late Proterozoic of East Greenland. Nature 321:856–857

    Article  CAS  Google Scholar 

  • Kobluk DR, Risk MJ (1977a) Algal borings and fromboidal pyrite in Upper Ordovician brachiopods. Lethaia 10:135–143

    Article  Google Scholar 

  • Kobluk DR, Risk MJ (1977b) Calcification of exposed filaments of endolithic algae, micrite envelope formation and sediment production. J Sedim Petrol 47:517–528

    CAS  Google Scholar 

  • Kolbasov GA (2000) Lithoglyptes cornutes, new species (Cirripedia: Acrothoracica), a boring barnacle from the Seychelles, with some data on its ultrastructure. Hydrobiology 438:185–191

    Article  Google Scholar 

  • Kuffner IB, Andersson AJ, Jokiel PL, Rodgers KS, Mackenzie FT (2008) Decrease abundance of crustose coralline algae due to ocean acidification. Nat Geosci 1:114–117

    Article  CAS  Google Scholar 

  • Laborel J, Le Campion-Alsumard T (1979) Infestation massive u squelette de coraux vivant par des Rhodophycees de type Conchocelis. C R Acad Sci Ser III 288:1575–1577

    Google Scholar 

  • Land LS (1979) The fate of reef derived sediment on the North Jamaican Island slope. Mar Geol 29:55–71

    Article  Google Scholar 

  • Langdon C, Atkinson MJ (2005) Effect of elevated pCO2 on photosynthesis and calcification of corals and interaction with seasonal change in temperature/radiance and nutrient enrichment. J Geophys Res Oceans 110:C09S07. doi:10.1029/2004JC002576

    Article  CAS  Google Scholar 

  • Langdon C, Takahashi T, Marubini F, Atkinson MJ, Sweeney C, Aceves H, Barnet H, Chipman D, Goddard J (2000) Effect of calcium carbonate saturation state on the calcification rate of an experimental coral reef. Global Biogeochem Cycles 14:639–654

    Article  CAS  Google Scholar 

  • Le Campion-Alsumard T (1975) Etude experimentale de la colonisation d’eclats de calcite par les cyanophycees endolithes marines. Cahiers Biol Mar 16:177–185

    Google Scholar 

  • Le Campion-Alsumard T (1979) Les cyanophycées endolithes marines. Systématique, ultrastructure, écologie et biodestruction. Oceanol Acta 2:143–156

    Google Scholar 

  • Le Campion-Alsumard T, Campbell SE, Golubic S (1982) Endoliths and the depth of the photic zone. Discussion. J Sed Petrol 52:1333–1338

    Google Scholar 

  • Le Campion-Alsumard T, Golubic S, Hutchings P (1995a) Microbial endoliths in skeletons of live and dead corals: Porites lobata (Moorea, French Polynesia). Mar Ecol Prog Ser 117:149–157

    Article  Google Scholar 

  • Le Campion-Alsumard T, Golubic S, Priess K (1995b) Fungi in corals: symbiosis or disease? Interaction between polyps and fungi causes pearl-like skeleton biomineralization. Mar Ecol Prog Ser 117:137–147

    Article  Google Scholar 

  • Lewis JB (1998) Reproduction, larval development and functional relationships of the burrowing, spionid polychaete Dipolydora armata with the calcareous hydrozoan Millepora complanata. Mar Biol 130:651–662

    Article  Google Scholar 

  • Lukas KJ (1978) Depth distribution and form among common microboring algae from the Florida continental shelf. Geol Soc Am 10:448

    Google Scholar 

  • Lukas KJ, Golubic S (1981) New endolithic cyanophytes from the North Atlantic Ocean: I. Cyanosaccus piriformis gen. et sp. nov. J Phycol 17:224–229

    Article  Google Scholar 

  • MacGeachy JK (1977) Factors controlling sponge boring in Barbados reef corals. Proc 3rd Int Coral Reef Symp, Miami 2:477–483

    Google Scholar 

  • MacIntyre IG, Prufert-Bebout L, Reid RP (2000) The role of endolithic cyanobacteria in the formation of lithified laminae in Bahamian stromatolites. Sediment 47:915–921

    Article  Google Scholar 

  • Magnusson SH, Fine M, Kühl M (2007) Light microclimate of endolithic phototrophs in the scleractinian corals Montipora monasteriata and Porites cylindrical. Mar Ecol Prog Ser 332:119–128

    Article  Google Scholar 

  • Mallela J, Perry CT (2007) Calcium carbonate budgets for two coral reefs affected by different terrestrial runoff regimes, Rio Bueno, Jamaica. Coral Reefs 26:129–145

    Article  Google Scholar 

  • Manzello DP, Kleypas JA, Budd DA, Eakin CM, Glynn PW, Langdon C (2008) Poorly cemented coral reefs of the eastern tropical Pacific: possible insights into reef development in a high-CO2 world. PNAS 105:10450–10455

    Article  CAS  Google Scholar 

  • Mariani S, Uriz M-J, Turon X (2000) Larval bloom of the oviparous sponge Cliona viridis: coupling of larval abundance and adult distribution. Mar Biol 137:783–790

    Article  Google Scholar 

  • McClanahan TR, Nugues M, Mwachireya S (1994) Fish and sea urchin herbivory and competition in Kenyan coral reef lagoons: the role of the reef management. J Exp Mar Biol Ecol 184:237–254

    Article  Google Scholar 

  • Mills SC, Peyrot-Clausade M, Fontaine MF (2000) Ingestion and transformation of algal turf by Echinometra mathei on Tiahura fringing reef (French Polynesia). J Exp Mar Biol Ecol 254:71–84

    Article  Google Scholar 

  • Muller EM, Rogers CS, Spitzack AS, van Woesik R (2008) Bleaching increases likelihood of disease on Acropora palmate (Lamarck) in Hawksnest Bay, St John, US Virgin Islands. Coral Reefs 27:191–195

    Article  Google Scholar 

  • Mumby PJ, Chisholm JRM, Edwards AJ, Clark CD, Roark EB, Andrefouet S, Jaubert J (2001) Unprecedented bleaching-induced mortality in Porites spp. At Rangiroa Atoll, French Polynesia. Mar Biol 139:183–189

    Article  Google Scholar 

  • Neumann AC (1966) Observations on coastal erosion in Bermuda and measurements of the boring rate of the sponge, Cliona lampa. Limnol Oceanogr 11:92–108

    Article  Google Scholar 

  • Otter GW (1937) Rock-destroying organisms in relation to coral reefs. Scientific Reports of the Great. Barr Reef Exped 1:323–352

    Google Scholar 

  • Pari N, Peyrot-Clausade M, Le Campion-Alsumard T, Hutchings PA, Chazottes V, Golubic S, Le Campion J, Fontaine MF (1998) Bioerosion of experimental substrates on high islands and atoll lagoons (French Polynesia) after two years of exposure. Mar Ecol Prog Ser 166:119–130

    Article  Google Scholar 

  • Perry CT (1998) Grain susceptibility to the effects of microboring: implication for the preservation of skeletal carbonates. Sediment 45:39–51

    Article  Google Scholar 

  • Perry CT (2000) Macroboring of Pleistocene coral communities, Falmouth formation, Jamaica. Palaios 15:483–491

    Google Scholar 

  • Perry CT, Hepburn LJ (2008) Syn-depositional alteration of coral reef framework through bioerosion, encrustation and cementation: taphonomic signatures of reef accretion and reef depositinal events. Earth Sci Rev 86:106–144

    Article  Google Scholar 

  • Peyrot-Clausade M, Hutchings PA, Richard G (1992) The distribution and successional patterns of macroborers in marine Porites at different stages of degradation on the barrier reef, Tiahura, Moorea, French Polynesia. Coral Reefs 11:161–166

    Article  Google Scholar 

  • Peyrot-Clausade M, Chazottes V (2000) La Bioérosion récifale et son rôle dans la sédimentogénèse à Moorea (Polynésie française) et à la Réunion. Océanis 26:275–309

    CAS  Google Scholar 

  • Pomponi SA (1980) Cytological mechanisms of calcium carbonate excavation by boring sponges. Int Rev Cytol 65:301–319

    Article  CAS  Google Scholar 

  • Radtke G, Le Campion-Alsumard T, Golubic S (1996) Microbial assemblages of the bioerosional “notch” along tropical limestone coasts. Algol Stud 83:469–482

    Google Scholar 

  • Rasmussen KA, Frankenberg EW (1990) Intertidal bioerosion by the chiton Acanthopleura granulata; San Salvador. Bahamas Bull Mar Sci 47:680–695

    Google Scholar 

  • Reaka-Kudla ML, Feingold JS, Glynn W (1996) Experimental studies of rapid bioerosion of coral reefs in the Galapagos Islands. Coral Reefs 15:101–107

    Google Scholar 

  • Risk MJ, Sammarco PW (1982) Bioerosion of corals and the influence of damselfish territoriality, a preliminary study. Oecologia 52:376–380

    Article  Google Scholar 

  • Risk MJ, Sammarco PW, Edinger EN (1995) Bioerosion in Acropora across the continental shelf of the Great Barrier Reef. Coral Reefs 14:79–86

    Article  Google Scholar 

  • Rotjan RD, Lewis SM (2006) Parrotfish abundance and corallivory on a Belizean coral reef. J Exp Mar Biol Ecol 335:292–301

    Article  Google Scholar 

  • Rotjan RD, Dimond JL, Thornhill DJ, Leichter JJ, Helmuth BST, Kemp DW, Lewis SM (2006) Chronic parrotfish grazing impedes coral recovery after bleaching. Coral Reefs 25:361–368

    Article  Google Scholar 

  • Rose CS, Risk MJ (1985) Increase in Cliona delitrix infestation of Montastrea cavernosa heads on an organically polluted portion of the Grand Cayman fringing reef. Mar Ecol 6:345–363

    Article  Google Scholar 

  • Russ GR (1984) The distribution and abundance of herbivorous grazing fishes in the central Great Barrier Reef. II. Levels of variability across the entire continental shelf. Mar Ecol Prog Ser 20:23–34

    Article  Google Scholar 

  • Rützler K (1974) The burrowing sponges of Bermuda. Smithson Contribut Zoo 165:1–32

    Google Scholar 

  • Rützler K (2002) Impact of crustose Clionid sponges on Caribbean reef corals. Acta Geol Hisp 37:61–72

    Google Scholar 

  • Schneider J (1976) Biological and inorganic factors in the destruction of limestone coasts. Contributions Sediment 6:1–112

    Google Scholar 

  • Schneider J, Campion-Alsumard T (1999) Construction and destruction of carbonates by marine and freshwater cyanob. Eur J Phycol 34:417–426

    Article  Google Scholar 

  • Schneider J, Torunski H (1983) Biokarst on limestone coasts, morphogenesis and sediment production. Mar Ecol 4:45–63

    Article  Google Scholar 

  • Schönberg CHL (2000) Bioeroding sponges common to the Central Great Barrier Reef: descriptions of three new species, two new records, and additions to two previously described species. Senckenb Marit 30:161–221

    Article  Google Scholar 

  • Schönberg CHL (2003) Substrate effects on the bioeroding Desmosponge Cliona orientalis. 2. Substrate colonisation and tissue growth. Mar Ecol 24:59–74

    Article  Google Scholar 

  • Schönberg CHL, Loh WKW (2005) Molecular identity of the unique symbiotic dinoflagellates found in the bioeroding desmosponge Cliona orientalis. Mar Ecol Prog Ser 299:157–166

    Article  Google Scholar 

  • Schönberg CHL (2008) A history of sponge erosion: from past myths and hypotheses to recent approaches. In: Wisshak M, Tabanila L (eds) Current developments in bioerosion. Springer, Berlin, pp 165–202

    Chapter  Google Scholar 

  • Schönberg CHL, Tapanila L (2006) The bioeroding sponge Aca paratypica, a modern tracemaking analogue for the Paleozoic ichnogenus Entobia devonica. Ichnos 13:147–157

    Article  Google Scholar 

  • Schönberg CHL, Wilkinson CR (2001) Induced colonization of corals by a clionid bioeroding sponge. Coral Reefs 20:69–76

    Article  Google Scholar 

  • Scoffin TP, Stearn CW, Boucher D, Frydl P, Hawkins CM, Hunter IG, MacGeachy JK (1980) Calcium carbonate budget of a fringing reef on the West coast of Barbados. Part II. Erosion, sediments and internal structure. Bull Mar Sci 30:475–508

    CAS  Google Scholar 

  • Scott PJB, Risk MJ (1988) The effect of Lithophaga (Bivalvia: Mytilidae) boreholes on the strength of the coral Porites lobata. Coral Reefs 7:145–151

    Article  CAS  Google Scholar 

  • Scott PJB (1988) Distribution, habitat and morphology of the Caribbean coral- and rock-boring bivalve, Lithophaga bisulcata (d’Orbigny) (Mytilidae: Lithophaginae). J Molluscan Stud 54:83–95

    Article  Google Scholar 

  • Stearn CW, Scoffin TP, Martindale W (1977) Calcium carbonate budget of a fringing reef on the west coast of Barbardos. Part 1: zonation and productivity. Bull Mar Sci 27:479–510

    CAS  Google Scholar 

  • Stockfors M, Peel JS (2005) Euendolithic Cyanobacteria from the Middle Cambrian of North Greenland. Geologiska Föreningens i Stockholm Förhandlingar, IFF 127:179–185

    Google Scholar 

  • Tapanila L, Copper P, Edinger E (2004) Environmental and substrate controls on Paleozoic bioerosion in corals and stromatoporoids, Anticosti Island, eastern Canada. Palaios 19:292–306

    Article  Google Scholar 

  • Todd JA (2000) The central role of ctenostomes in bryozoan phylogeny. Proceedings of the 11th international Bryozoology association conference, Lawrence pp 104–135

    Google Scholar 

  • Tomascik T, Sander F (1987) Effects of eutrophication on reefbuilding corals. II. Structure of scleractinian coral communities on fringing reefs, Barbados, West Indies. Mar Biol 94:53–75

    Article  Google Scholar 

  • Tudhope AW, Risk MJ (1985) Rate of dissolution of carbonate sediments by microboring organisms, Davies Reef, Australia. J Sediment Petrol 55:440–447

    Google Scholar 

  • Tribollet A (2001). Processus de bioérosion récifale (Grand Barrière de Corail, Australie). Importance du rôle joué par la microflore perforante, p 190. Ph.D. thesis. Université de la Méditerranée Aix-Marseille, II

    Google Scholar 

  • Tribollet A (2008a) The boring microflora in modern coral reef ecosystems: a review of its roles. In: Wisshak M, Tapanila L (eds) Current developments in bioerosion. Springer, Berlin-Heiderlberg, pp 67–94

    Chapter  Google Scholar 

  • Tribollet A (2008b) Dissolution of dead corals by euendolithic microorganisms across the northern Great Barrier Reef (Australia). Microb Ecol 55:569–580

    Article  Google Scholar 

  • Tribollet A, Payri C (2001) Bioerosion of the crustose coralline alga Hydrolithon onkodes by microborers in the coral reefs of Moorea. French Polynesia. Oceanol Acta 24:329–342

    Article  Google Scholar 

  • Tribollet A, Golubic S (2005) Cross-shelf differences in the pattern and pace of bioerosion of experimental carbonate substrates exposed for 3 years on the northern Great Barrier Reef, Australia. Coral Reefs 24:422–434

    Article  Google Scholar 

  • Tribollet A, Decherf G, Hutchings PA, Peyrot-Clausade M (2002) Large-scale spatial variability in bioerosion of experimental coral substrates on the Great Barrier Reef (Australia): importance of microborers. Coral Reefs 21:424–432

    Google Scholar 

  • Tribollet A, Radtke G, Golubic S Bioerosion. In: Encyclopedia of Geobiology. Springer, Berlin (in press)

    Google Scholar 

  • Tribollet A, Langdon C, Golubic S, Atkinson M (2006a) Endolithic microflora are major primary producers in dead carbonate substrates of Hawaiian coral reefs. J Phycol 42:292–303

    Article  CAS  Google Scholar 

  • Tribollet A, Atkinson M, Langdon C (2006b) Effects of elevated pCO2 on epilithic and endolithic metabolism of reef carbonates. Glob Change Biol 12:2200–2208

    Article  Google Scholar 

  • Tribollet A, Godinot C, Atkinson M, Langdon C (2009) Effects of elevated pCO2 on dissolution of coral carbonates by microbial euendoliths. Glob Biogeoch Cycles 23:GB3008. doi:10.1029/2008GB003286

    Article  CAS  Google Scholar 

  • Trudgill ST (1976) The marine erosion of limestone on Aldabra Atoll, Indian Ocean. Z Geomorphol Suppl 26:164–200

    CAS  Google Scholar 

  • Vogel K, Gektidis M, Golubic S, Kiene WE, Radtke G (2000) Experimental studies on microbial bioerosion at Lee Stocking Island, Bahamas and One Tree Island, Great Barrier Reef, Australia: implications for paleoecological reconstructions. Lethaia 33:190–204

    Article  Google Scholar 

  • Walker SE (2007) Traces of gastropod predation on molluscan prey in tropical reef environments. In: Miller W III (ed) Trace fossils: concepts, problems, prospects. Elsevier, Amsterdam, pp 324–344

    Google Scholar 

  • Ward-Paige CA, Risk MJ, Sherwood OA, Jaap WC (2005) Clionid sponge surveys on the Florida Reef Tract suggest land-based nutrient inputs. Facies 51:570–579

    CAS  Google Scholar 

  • Warme JE (1975) Borings as trace fossils, and the processes of marine bioerosion. In: Frey RW (ed) The study of trace fossils. Springer, Berlin Heidelberg, New York, pp 181–229

    Google Scholar 

  • Wielgus J, Glassom D, Chadwick NE (2006) Patterns of polychaete worm infestation of stony corals in the northern Red Sea and relationships to water chemistry. Bull Mar Sci 78:377–388

    Google Scholar 

  • Wilkinson C (2002) The status of the coral reefs of the world: 2002, Australian Institute of Marine Science and the Global Coral Reef Monitoring Network, Townsville, pp 1–378

    Google Scholar 

  • Wilson MA (2007) Macroborings and the evolution of marine bioerosion. In: Miller W III (ed) Trace fossils: concepts, problems, prospects. Elsevier, Amsterdam-Oxford-New York, pp 356–367

    Google Scholar 

  • Wilson MA, Palmer TJ (2006) Patterns and processes in the Ordovician bioerosion revolution. Ichnos 13:109–112

    Article  Google Scholar 

  • Wilson MA (2008) An online bibliography of bioerosion references. In: Wisshack M, Tapanila L (eds) Current development in bioerosion. Springer, Berlin-Heidelberg, pp 473–478, http://www.wooster.edu/geology/bioerosion/BioerosionBiblio.pdf

    Chapter  Google Scholar 

  • Wisshak M (2006). High-latitude bioerosion. In: S. Bhattachararji, H. J. Neugebauer, J. Reitner, and K.Stüwe (eds.) Lecture, Notes in Earth Sciences, Berlin-Heidelberg Springer, vol 109 pp 1–202

    Google Scholar 

  • Zea S, Weil E (2003) Taxonomy of the Caribbean excavating sponge species complex Cliona caribbaeaC. apricaC. langae (Porifera, Hadromerida, Clionaidae). Caribbean J Sci 39:348–370

    Google Scholar 

  • Zhang Y, Golubic S (1987) Endolithic microfossils (cyanophyta) from early Proterozoic stromatolites, Hebei, China. Acta Micropaleontologica Sinica 4:1–12

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aline Tribollet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Tribollet, A., Golubic, S. (2011). Reef Bioerosion: Agents and Processes. In: Dubinsky, Z., Stambler, N. (eds) Coral Reefs: An Ecosystem in Transition. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0114-4_25

Download citation

Publish with us

Policies and ethics