Skip to main content

Simulation of Coupled Oscillators Using Nonlinear Phase Macromodels and Model Order Reduction

  • Chapter
  • First Online:
Model Reduction for Circuit Simulation

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 74))

Abstract

Oscillators are used in many integrated RF circuits. Since their behavior is highly nonlinear, full system simulation can be expensive. Furthermore, the behavior of an oscillator can be (un)intendedly perturbed by that of other components and oscillators. We apply a method to build nonlinear phase macromodels of voltage controlled oscillators and show how these can be used to predict the behavior of oscillators under perturbation. Model order reduction techniques are used to decrease simulation times. Numerical results for realistic design illustrate the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Similar to singular values of matrices, the Hankel singular values and corresponding vectors can be used to identify the dominant subspaces of the system’s statespace: the larger the Hankel singular value, the more dominant.

  2. 2.

    Matlab code for plotting the PSD is given in [12].

References

  1. Adler, R.: A study of locking phenomena in oscillators. In: Proceedings of the I.R.E. and Waves and Electrons, vol. 34, pp. 351–357 (1946)

    Google Scholar 

  2. Agarwal, S., Roychowdhury, J.: Efficient multiscale simulation of circadian rhythms using automated phase macromodelling techniques. In: Proceedings of the Pacific Symposium on Biocomputing, vol. 13, pp. 402–413 (2008)

    Google Scholar 

  3. Antoulas, A.C.: Approximation of Large-Scale Dynamical Systems. SIAM, Philadelphia, PA (2005)

    Google Scholar 

  4. Banai, A., Farzaneh, F.: Locked and unlocked behaviour of mutually coupled microwaveoscillators. In: IEE Proceedings of the Antennas and Propagation, vol. 147, pp. 13–18 (2000)

    Google Scholar 

  5. Benner, P., Mehrmann, V., Sorensen, D. (eds.): Dimension Reduction of Large-Scale Systems, Lecture Notes in Computational Science and Engineering, vol. 45. Springer, Berlin (2005)

    Google Scholar 

  6. Ciarlet, P.G., Schilders, W.H.A., ter Maten, E.J.W. (eds.): Numerical Methods in Electromagnetics, Handbook of Numerical Analysis, vol. 13. Elsevier, Amsterdam (2005)

    Google Scholar 

  7. Demir, A., Long, D., Roychowdhury, J.: Computing phase noise eigenfunctions directly from steady-state Jacobian matrices. In: IEEE/ACM International Conference on Computer Aided Design, 2000. ICCAD-2000, pp. 283–288 (2000)

    Google Scholar 

  8. Demir, A., Mehrotra, A., Roychowdhury, J.: Phase noise in oscillators: a unifying theory and numerical methods for characterization. IEEE Trans. Circ. Syst. I 47(5), 655–674 (2000)

    Article  Google Scholar 

  9. Galton, I., Towne, D.A., Rosenberg, J.J., Jensen, H.T.: Clock distribution using coupled oscillators. In: IEEE International Symposium on Circuits and Systems, vol. 3, pp. 217–220 (1996)

    Google Scholar 

  10. Günther, M., Feldmann, U., ter Maten, J.: Modelling and discretization of circuit problems. In: Handbook of Numerical Analysis, vol. XIII, pp. 523–659. North-Holland, Amsterdam (2005)

    Google Scholar 

  11. Harutyunyan, D., Rommes, J., Termaten, E.J.W., Schilders, W.H.A.: Simulation of mutually coupled oscillators using nonlinear phase macromodels. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 28(10) pp. 1456-1466 (2009)

    Article  Google Scholar 

  12. Heidari, M.E., Abidi, A.A.: Behavioral models of frequency pulling in oscillators. In: IEEE International Behavioral Modeling and Simulation Workshop, pp. 100–104 (2007)

    Google Scholar 

  13. Houben, S.H.J.M.: Circuits in motion: the numerical simulation of electrical oscillators. Ph.D. thesis, Technische Universiteit Eindhoven (2003)

    Google Scholar 

  14. Kevenaar, T.A.M.: Periodic steady state analysis using shooting and wave-form-Newton. Int. J. Circ. Theory Appl. 22(1), 51–60 (1994)

    Article  MATH  Google Scholar 

  15. Kundert, K., White, J., Sangiovanni-Vincentelli, A.: An envelope-following method for the efficient transient simulation of switching power and filter circuits. In: IEEE International Conference on Computer-Aided Design, 1988. ICCAD-88. Digest of Technical Papers, pp. 446–449 (1988)

    Google Scholar 

  16. Lai, X., Roychowdhury, J.: Capturing oscillator injection locking via nonlinear phase-domain macromodels. IEEE Trans. Micro. Theory Tech. 52(9), 2251–2261 (2004)

    Article  Google Scholar 

  17. Lai, X., Roychowdhury, J.: Fast and accurate simulation of coupled oscillators using nonlinear phase macromodels. In: Microwave Symposium Digest, 2005 IEEE MTT-S International, pp. 871–874 (2005)

    Google Scholar 

  18. Lai, X., Roychowdhury, J.: Fast simulation of large networks of nanotechnological and biochemical oscillators for investigating self-organization phenomena. In: Proceedings of the IEEE Asia South-Pacific Design Automation Conference, pp. 273–278 (2006)

    Google Scholar 

  19. Mathworks: Matlab 7 (2009). URL http://www.mathworks.com/

  20. Moore, B.C.: Principal component analysis in linear systems: controllability, observability and model reduction. IEEE Trans. Autom. Control 26(1), 17–32 (1981)

    Article  MATH  Google Scholar 

  21. Razavi, B.: A study of injection locking and pulling in oscillators. IEEE J. Solid-State Circ. 39(9), 1415–1424 (2004)

    Article  Google Scholar 

  22. Schilders, W.H.A., van der Vorst, H.A., Rommes, J. (eds.): Model Order Reduction: Theory, Research Aspects and Applications, Mathematics in Industry, vol. 13. Springer, Berlin (2008)

    Google Scholar 

  23. Semlyen, A., Medina, A.: Computation of the periodic steady state in systems with nonlinear components using a hybrid time and frequency domain method. IEEE Trans. Power Syst. 10(3), 1498–1504 (1995)

    Article  Google Scholar 

  24. Stykel, T.: Gramian based model reduction for descriptor systems. Math. Control Signals Syst. 16, 297–319 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  25. Wan, Y., Lai, X., Roychowdhury, J.: Understanding injection locking in negative resistance LC oscillators intuitively using nonlinear feedback analysis. In: Proceedings of the IEEE Custom Integrated Circuits Conference, pp. 729–732 (2005)

    Google Scholar 

  26. Yanzhu, Z., Dingyu, X.: Modeling and simulating transmission lines using fractional calculus. In: International Conference on Wireless Communications, Networking and Mobile Computing, 2007. WiCom 2007, pp. 3115–3118 (2007). doi: 10.1109/WICOM.2007.773

Download references

Acknowledgment

This work was supported by EU Marie-Curie project O-MOORE-NICE! FP6 MTKI-CT-2006-042477.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joost Rommes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Harutyunyan, D., Rommes, J. (2011). Simulation of Coupled Oscillators Using Nonlinear Phase Macromodels and Model Order Reduction. In: Benner, P., Hinze, M., ter Maten, E. (eds) Model Reduction for Circuit Simulation. Lecture Notes in Electrical Engineering, vol 74. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0089-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-0089-5_9

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-0088-8

  • Online ISBN: 978-94-007-0089-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics