Advertisement

Interpretations of Modern Physics

  • Peter MittelstaedtEmail author
Chapter
Part of the Fundamental Theories of Physics book series (FTPH, volume 169)

Abstract

Since the advent of Modern Physics in 1905, when Einstein’s theory of Special Relativity appeared, we observe a rapidly increasing activity to “interpret” this new and for the present somewhat strange theory of Modern Physics. However, it should be emphasised, that Special Relativity was only the first one in a sequence of new theories, that allegedly required an “interpretation”. It was followed by General Relativity, which from a mathematical point of view is much more ambitious and thus even less comprehensible than Special Relativity. Accordingly, interpretations of General Relativity are concerned with mathematical subtleties as well as with purely conceptual problems. The third theory in the sequence in question is Quantum Mechanics. With General Relativity it shares the great mathematical complexity and intricacies, with Special Relativity the new conceptual situation, in particular the difficult interrelations between classical physics and the new theory. Hence, it should not be very surprising, that the majority of interpretations of modern physics are concerned with Quantum Mechanics.

References

  1. Birkhoff, G., & von Neumann, J. (1936). The logic of quantum mechanics. Annals of Mathematics, 37, 823–843.MathSciNetCrossRefGoogle Scholar
  2. Bohr, N. (1928). The quantum postulate and the recent development of atomic theory. Nature, 121, 580–590. (1928). Das Quantenpostulat und die neuere Entwicklung der Atomistik. Die Naturwissenschaften 16, 245–257.ADSzbMATHCrossRefGoogle Scholar
  3. Bohr, N. (1948). On the notion of causality and complementarity. Dialectica, 2, 312–319.zbMATHCrossRefGoogle Scholar
  4. Born, M. (1920). Die Relativitätstheorie Einsteins und ihre physikalischen Grundlagen (gemeinverständlich dargestellt). Berlin: Springer.zbMATHGoogle Scholar
  5. Busch, P., Grabowski, M., & Lahti, P. (1995). Operational quantum physics. Heidelberg: Springer.zbMATHGoogle Scholar
  6. Busch, P., Lahti, P., & Mittelstaedt, P. (1996). The quantum theory of measurement (2nd ed.). Heidelberg: Springer.zbMATHGoogle Scholar
  7. Ehlers, J., Pirani, F. A. E., & Schild, A. (1972). The geometry of free fall and light propagation. In L. O´Raiffeartaigh (Ed.), General relativity (pp. 63–84). Oxford: Clarendon.Google Scholar
  8. Einstein, A. (1917). Über spezielle und allgemeine Relativitätstheorie (Gemeinverständlich). Braunschweig: Vieweg Verlag.Google Scholar
  9. von Helmholtz, H. (1868). Über die Tatsachen, die der Geometrie zu Grunde liegen. Nachrichten der Königlichen Gesellschaft der Wissenschaften und der Georg-Augusts-Universität, Nr. 9 (pp. 193–221).Google Scholar
  10. Howard, D. (2004). Who invented the ‘Copenhagen interpretation’? A study in mythology. Philosophy of Science, 71, 669–682.MathSciNetCrossRefGoogle Scholar
  11. Jammer, M. (1974). The philosophy of quantum mechanics. New York: Wiley.Google Scholar
  12. Lahti, P., & Mittelstaedt, P. (Eds.). (13–17 August 1990). Symposium on the foundations of modern physics 1990 – Quantum theory of measurement and related philosophical problems, Joensuu, Finland. Singapore: World Scientific.Google Scholar
  13. Könneker, K. (2001). Auflösung der Natur- Auflösung der Geschichte. Stuttgart: J.B. Metzler.Google Scholar
  14. Mach, E. (1901). Die Mechanik in ihrer Entwicklung (4th ed.). Leipzig: F. A. Brockhaus. English trans.: (1902). The science of mechanics (T. J. McCormack, Trans.). Chicago: Open Court.Google Scholar
  15. Martzke, R., & Wheeler, J. A. (1964). Gravitation as geometry I: The geometry of space-time and the geometrodynamical standard meter. In H. Y. Chiu & W. F. Hoffman (Eds.), Gravitation and relativity (pp. 40–64). New York: A. Benjamin.Google Scholar
  16. Mittelstaedt, P. (1998). The interpretation of quantum mechanics and the measurement process. Cambridge: Cambridge University Press.zbMATHGoogle Scholar
  17. von Neumann, J. (1932). Mathematische Grundlagen der Quantenmechanik. Berlin: Springer.zbMATHGoogle Scholar
  18. Poincare, H. (1898). La mesure du temps. Revue de metaphysique et de moral, VI, 1–13.Google Scholar
  19. Reichenbach, H. (1944). Philosophical foundation of quantum mechanics. Berkeley/Los Angeles: University of California Press. – Deutsche Übers. (1949). Philosophische Grundlagen der Quantenmechanik. Basel: Birkhäuser.Google Scholar
  20. Stachel, J. (2002). Einstein from B to Z. Boston: Birkhäuser.zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Inst. Theoretische PhysikUniversität KölnKölnGermany

Personalised recommendations